Р-n переход при внешнем напряжении, приложенном к нему




Внешнее напряжение нарушает динамическое равновесие токов в p-n -переходе. p-n переход переходит в неравновесное состояние. В зависимости от полярности напряжения приложенного к областям в p-n -перехода возможно два режима работы.

1) Прямое смещение p-n перехода. Р-n переход считается смещённым в прямом направлении, если положительный полюс источника питания подсоединен к р-области, а отрицательный к n-области (рис..)

При прямом смещении, напряжения jк и U направлены встречно, результирующее напряжение на p-n переходе убывает до величины jк - U. Это приводит к тому, что напряженность электрического поля убывает и возобновляется процесс диффузии основных носителей заряда. Кроме того, прямое смещении уменьшает ширину p-n перехода, т.к. lp-n (jк – U)1/2. Ток диффузии, ток основных носителей заряда, становится много больше дрейфогово. Через p-n переход протекает прямой ток

Iр-n=Iпр=Iдиф+Iдр @Iдиф.

При протекании прямого тока основные носители заряда р-области переходят в n-область, где становятся неосновными. Диффузионный процесс введения основных носителей заряда в область, где они становятся неосновными, называется инжекцией, а прямой ток – диффузионным током или током инжекции. Для компенсации неосновных носителей заряда накапливающихся в p и n-областях во внешней цепи возникает электронный ток от источника напряжения, т.е. принцип электронейтральности сохраняется.

При увеличении U ток резко возрастает, - температурный потенциал, и может достигать больших величин т.к. связан с основными носителями концентрация которых велика.

2) Обратное смещение, возникает когда к р- области приложен минус, а к n-области плюс, внешнего источника напряжения (рис.).

Такое внешнее напряжение U включено согласно jк. Оно: увеличивает высоту потенциального барьера до величины jк + U; напряженность электрического поля возрастает; ширина p-n перехода возрастает, т.к. lp-n (jк + U)1/2; процесс диффузии полностью прекращается и через p-n переход протекает дрейфовый ток, ток неосновных носителей заряда. Такой ток p-n -перехода называют обратным, а поскольку он связан с неосновными носителями заряда, которые возникают за счет термогенерации то его называют тепловым током и обозначают - I0, т.е.

Iр-n=Iобр=Iдиф+Iдр @Iдр= I0.

Этот ток мал по величине т.к. связан с неосновными носителями заряда, концентрация которых мала. Таким образом, p-n перехода обладает односторонней проводимостью.

При обратном смещении концентрация неосновных носителей заряда на границе перехода несколько снижается по сравнению с равновесной. Это приводит к диффузии неосновных носителей заряда из глубины p и n-областей к границе p-n перехода. Достигнув ее неосновные носители попадают в сильное электрическое поле и переносятся через p-n переход, где становятся основными носителями заряда. Диффузия неосновных носителей заряда к границе p-n перехода и дрейф через него в область, где они становятся основными носителями заряда, называется экстракцией. Экстракция и создает обратный ток p-n перехода- это ток неосновных носителей заряда.

Величина обратного тока сильно зависит: от температуры окружающей среды, материала полупроводника и площади p-n перехода.

Температурная зависимость обратного тока определяется выражением , где - номинальная температура, - фактическая температура, - температура удвоения теплового тока .

Тепловой ток кремниевого перехода много меньше теплового токо переехода на основе германия (на 3-4 порядка). Это связано с jк материала.

С увеличением площади перехода возрастает его обьем, а следовательно возрастает число неосновных носителей появляющихся в результате термогенерации и тепловой ток.

ВАХ р-n перехода

Это зависимость тока через р-n переход от напряжения на нём i=f(u).

Аналитически, при прямом и обратном смещении ВАХ записывают в виде

Часто ВАХ, для наглядности, представляют в виде графиков.

График вольт амперной характеристики приведен на рис.1.15. Для наглядности прямая и обратная ветви показаны в разных масштабах, например, по току масштабы отличаются в тысячу раз. Главное свойство p-n перехода – это его односторонняя проводимость, т.е. способность пропускать ток в прямом направлении и практически не пропускать в обратном.

Если прямую и обратную ветвь построить в одном масштабе, то ВАХ p-n перехода имеет вид, как показано на рис.. Из рисунка четко видно, что p-n переход обладает односторонней проводимостью, т. е. Iпр>>Iобр или Rпр<<Rобр.

 
 

Дифференциальное сопротивление p-n перехода при прямом смещении определяется из соотношения rдиф= jт/Iпр. Так, например, при I=1мА и jт=25мВ rдиф=25Ом.

1.2.6. Ёмкости p-n перехода

Тот факт, что p-n переход накапливает электрический заряд свидетельствует о том, что он обладает ёмкостью. Емкость p-n перехода состоит из двух составляющих -различают барьерную и диффузионную емкости.

-.

а) При обратном смещении преобладает барьерная емкость Сбардиф. Она связана с неподвижными ионами примесей, коцентрация которых невелика. Величина этой емкости зависит от величины напряжения на p-n переходе.

,

где - ёмкость, при , - обратное напряжение, - зависит от типа p-n перехода (n=1/2 – для резкого, n=1/3 – для плавного перехода), ε — диэлектрическая проницаемость полупроводникового материала; П — площадь р-n-перехода.

Эта зависимость связана с тем, что при увеличении обратного напряжения p-n переход расширяется. Из формулы (1.8) следует, что барьерная емкость зависит от площади перехода П, напряжения на переходе U, а также от концентрации примесей.

Модельным аналогом барьерной емкости может служить емкость плоского конденсатора, обкладками которого являются р- и n -области, а диэлектриком служит р-n -переход, практически не имеющий подвижных зарядов. Значение барьерной емкости колеблется от десятков до сотен пикофарад, а изменение этой емкости при изменении напряжения может достигать десятикратной величины.

б) Диффузионная ёмкость, преобладает (Сдиф>>Сбар) при прямом смещении p-n-перехода и характеризуется накоплением неосновных носителей зарядов вблизи p-n-перехода при протекании прямого диффузионного тока (тока инжекции)

, ,

где - время жизни неосновных носителей заряда, - время, в течение которого протекает прямой ток Iпр.

Значения диффузионной емкости могут иметь порядок от сотен до тысяч пикофарад.

В целом, если сравнивать диффузионную и барьрную емкости, то выполняется соотношение Сдиф>>Сбар. Это связано с тем, что диффузионная емкость связана с прямым, диффузионным током (током основных носителей заряда), который может достигать больших величин.

На практика используется лишь барьерная ёмкость, т.к. диффузионная емкость обладает малой добротностью, поскольку параллельно этой ёмкости включён p-n переход, смещённый в прямом направлении с малым прямым сопротивлением.

1.2.7. Пробой p-n перехода

 
 

Согласно математической модели p-n-перехода его обратный ток равен тепловому Iобр = I0 и не зависит от величины обратного напряжения. Однако при значительных обратных напряжениях возникает резкое возрастание тока. Это явление, резкого возрастания тока при обратном смещении p-n перехода, называют пробоем p-n-перехода, а напряжение, при котором происходит это явление - напряжением пробоя. Классификация видов пробоя показана на рис.1.17.

Электрический пробой обратимый, т.е. после уменьшения величины обратного напряжения p-n-переход восстанавливает свои первоначальные свойства. Тепловой пробой, необратимый. Он сопровождается разрушением кристаллической решетки p-n-перехода, после чего p-n-переход не восстанавливает свои первоначальные свойства.

Лавинный пробой происходит в слаболегированных - “широких” p-n-переходах и состоит в ударной ионизации. При достаточно большой напряжённости электрического поля электроны достигают скоростей, при которых выбивают из атома собственного полупроводника валентные электроны, которые в свою очередь выбивают новые. Этот процесс происходит лавинообразно и потому пробой называется лавинообразным.

Туннельный пробой происходит в сильнолегированных, “узких”, p-n-переходах, и состоит в отрыве под действием сильного электрического поля валентных электронов, в результате чего в объёме p-n-перехода образуются новые свободные носители заряда.

Тепловой переход возникает вследствие разогрева p-n-перехода собственным обратным током. Тепловой пробой возникает, когда мощность, подводимая к переходу Рподв=UобрI0 становится больше отводимой Ротв. При протекании обратного тока температуры p-n-перехода повышается, это ведет к усилению процесса термогенерации, т.е. к росту числа неосновных носителей заряда. Это приводит к новому увеличению Jобр, что приводит к ещё большему разогреву p-n-перехода. Этот процесс развивается лавинообразно, в результате чего температура повышается и происходит расплавление p-n-перехода.

Вольт амперная характеристика при различных пробоях показана на рис..:

(1) - Лавинный. (2) - Туннельный. (3) - Тепловой. На этих зависимостях участок 1-2 – электрический пробой, а участок 2-3 – тепловой пробой.


 

Контрольные вопросы

1. Что понимают под электропроводностью?

2. Что понимают под электрическим током?

3. Как подразделяются твердые вещества по типу электропроводности?

4. Что понимают под чистым полупроводником?

5.

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: