Явление электромагнитной индукции




ИЗУЧЕНИЕ ЯВЛЕНИЙ САМОИНДУКЦИИ И ВЗАИМНОЙ ИНДУКЦИИ

Лабораторная работа № 9

 

Разрешено как учебно - методическое пособие для специальностей 1-38 02 01 Информационно-измерительная техника

и 1-38 02 03 Техническое обеспечение безопасности

 

 

Минск

БНТУ

 
 


УДК 537.851 (075.8)

ББК 31.292 я7

И39

 

 

Составители:

Ю.А. Бумай, В.В. Черный,.

 

 

Рецензенты:

И.И. Жолнеревич, П.Г. Кужир

И 39 Изучение явлений самоиндукции и взаимной индукции:

лабораторная работа №9/сост. Ю. А. Бумай [ и др.]. ‒Минск: БНТУ, 2013, 19 с.

 

Учебно-методическое пособие содержит описание (теоретическую часть, схему экспериментальной установки и задание) лабораторной работы, посвященной изучению явлений самоиндукции и взаимной индукции. иса в ферромагнетиках. На основании полученных результатов определяются величины индуктивностей и коэффициент самоиндукции.

Пособие предназначено для студентов инженерных специальностей, изучающих раздел “ Электричество и магнетизм ” курса общей физики.

 

 

УДК 537.851 (075.8)

ББК 31.292 я7

© БНТУ, 2013

 


ЛАБОРАТОРНАЯ РАБОТА №9

ИЗУЧЕНИЕ ЯВЛЕНИЙ САМОИНДУКЦИИ И ВЗАИМНОЙ ИНДУКЦИИ

Цель работы: изучить закон электромагнитной индукции, явления самоиндукции и взаимной индукции.

Задачи работы:

1. Измерить ЭДС самоиндукции и постоянные времени цепи, содержащей катушку индуктивности, при включении и выключении источника питания.

2. Определить индуктивности и взаимную индуктивность катушек трансформатора

 

Явление электромагнитной индукции

 

Предположим, в некоторой области пространства создано магнитное поле. Проведем в этой области некоторую поверхность S. Выделим малый элемент поверхности площадью dS, который можно считать плоским и в пределах которого вектор магнитной индукции остается неизменным по модулю и направлению. Магнитный поток (поток вектора магнитной индукции) через площадь dS равен произведению величины этой площади и проекции вектора индукции магнитного поля Bn на вектор единичной нормали (перпендикуляра) к поверхности:

 

= Bn dS = B cos α dS, (1)

 

где α – угол между векторами и (рис. 1). Магнитный поток через любую поверхность S определяется интегралом по этой поверхности:

 

= , (2)

где Bn – проекция вектора на единичный вектор нормали в каждой точке поверхности. В системе СИ единица измерения магнитного потока называется Вебер (Вб): 1Вб = 1 Тл· м2 = 1В· с.

В экспериментах Эрстеда впервые было установлено, что электрический ток создаёт магнитное поле. В дальнейшем М. Фарадеем в 1831 г. было установлено, что, в свою очередь, магнитное поле (точнее его изменение) создает электрический ток. Им было открыто явление электромагнитной индукции: в замкнутом проводящем контуре при изменении потока магнитной индукции (магнитного потока) через поверхность, ограниченную этим контуром, возникает электрический ток, называемый индукционным. Если контур не замкнут, между его концами возникает электродвижущая сила индукции Ԑi.

 

Рис.1. Вычисление магнитного потока через поверхность площадью dS.

 

Возникновение индукционного тока в проводящем контуре, магнитный поток через который изменяется, свидетельствует о возникновении в этом контуре электрического поля (т.н. вихревого электрического поля). Это поле действует на свободные электрические заряды (в металлических проводниках это электроны), вызывая их направленное движение. Следовательно, в контуре действует электродвижущая сила ε i (ЭДС индукции).

ЗАКОН ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ, установленный Фарадеем, гласит, что ЭДС индукции, возникающая в контуре, прямо пропорциональна скорости изменения магнитного потока Ф через поверхность, ограниченную этим контуром:

 

εi = . (3)

 

При этом εi не зависит ни от способа изменения магнитного потока, ни от сопротивления контура. Знак минус в этой формуле связан с тем, что магнитный поток, создаваемый индукционным током, стремится препятствовать изменению исходного магнитного потока, которое и вызывает этот ток.

 

Явление самоиндукции

 

Предположим, что по некоторому замкнутому контуру протекает ток, сила которого равна I. Ток будет создавать в окружающем пространстве магнитное поле. Силовые линии этого поля будут пересекать также и сам контур и создавать магнитный поток через этот же контур. По закону Био-Савара-Лапласа, модуль вектора магнитной индукции, создаваемой током, будет в любой точке пространства прямо пропорционален силе тока. Следовательно, полный магнитный поток через контур Ψ, называемый иначе потокосцеплением, будет также прямо пропорционален току:

 

Ψ = L · I, (4)

 

где L – коэффициент пропорциональности, называемый индуктивностью контура. Индуктивность зависит от формы и размеров контура и магнитных свойств среды, в которой находится контур. Размерность потокосцепления, как и магнитного потока, Вебер. Из (4) следует, что индуктивность численно равна потокосцеплению, пронизывающему контур при силе тока в контуре, равном 1 А. Единица индуктивности в системе СИ называется Генри (Гн): 1Гн = 1 Вб/А = 1 Ом·с.

Индуктивность тонкой длинной катушки (соленоида) длиной l, площадью поперечного сечения S и числом витков N можно определить, используя известную формулу для индукции магнитного поля в соленоиде:

 

, (5)

 

где μ0 – магнитная постоянная, μ – относительная магнитная проницаемость среды внутри катушки. Тогда магнитный поток через один виток соленоида

 

,

а потокосцепление

 

Ψ = NФ = .

 

С учетом (4), имеем:

 

. (6)

 

Строго говоря, последняя формула выражает индуктивность участка бесконечно длинного соленоида длиной l. Конечно, реальные соленоиды имеют конечную длину и индуктивность соленоида меньше. На практике это учитывается введением коэффициента k, значение которого меньше единицы и зависит от соотношения между длиной l соленоида и его радиусом R.

 

. (7)

 

Как отмечалось, ЭДС индукции возникает в контуре независимо от причин, вызывающих изменение магнитного потока, пронизывающего контур. При изменении тока в контуре изменится и магнитный поток, пересекающий этот контур, что приведет к возникновению в контуре ЭДС индукции. Возникновение ЭДС индукции в проводящем контуре при изменении тока, протекающего по нему, называется явлением самоиндукции. Такое название принято, поскольку ЭДС индукции в контуре возникает в результате изменения тока, протекающего в самом же контуре, а не в результате каких либо внешних воздействий. Величину ЭДС самоиндукции εs найдём, если в (3) вместо Ф подставим выражение (4) для Ψ:

 

εs = (8)

 

Предполагается, что форма и размеры контура не изменяются, иначе формула усложнится. Знак минус в (8) означает, что ЭДС самоиндукции направлена таким образом, чтобы препятствовать изменению тока в контуре (правило Ленца для ЭДС самоиндукции). Иначе говоря, если ток I возрастает (см. рис. 2,а), то ток Is, создаваемыйЭДС самоиндукции, направлен против тока в контуре.Если же ток I убывает, ток Is совпадает по направлению с I (рис 2,б).

 

а б

 

Рис.2. Направления токов и ЭДС самоиндукции

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-27 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: