Между проводниками в-р напряженности постоянен.




МГТУ им. Н.Э. Баумана

 
 


МАГНИТОСТАТИКА

Разобранные задачи по физике

3 семестр

 

Редактор: Fozi

ICQ: 1860

 

 

Москва, 2002

Задача 2.1

Условие:

Проводник с током, равномерно распределённым по его поперечному сечению и имеющему плотность j, имеет форму трубки, внешний и внутренний радиусы которой равны R0 и R соответственно. Магнитная проницаемость меняется по закону m=f(r). Построить графически распределения модулей векторов индукции магнитного поля B и напряжённости магнитного поля H, а также модуля вектора намагниченности J в зависимости от r в интервале от R до R0. Определить поверхностную плотность токов намагничивания i'п на внутренней и внешней поверхностях трубки и распределение объёмной плотности токов намагничивания i'об(r).

 

Функция m=f(r) для чётных вариантов имеет вид: m=(R0n+rn)/R0n.

Функция m=f(r) для нечётных вариантов имеет вид: m=(R0n+rn)/Rn.

Таблица 2.1. Значения параметров R0/R и n в зависимости от номера варианта.

 

Вариант R0/R n
  2/1  
  2/1  
  3/1  
  3/1  

Решение:

Напряженность поля вычислим по теореме о циркуляции вдоль контура l, совпадающего с окружностью радиуса r:

 

Эта формула будет справедлива для всех вариантов Задачи 2.1 за счёт независимости напряжённости от величины магнитной проницаемости среды.

 

 

Вариант 1

По условию:

Вычислим магнитную индукцию по формуле:

Намагниченность материала проводника:

Плотность тока намагничивания:

Записав это выражение в виде определителя в цилиндрических координатах, учитывая осевую симметрию, можно привести его к виду:

Подставив в эту формулу выражение для намагниченности и продифференцировав, получим:

Найдём плотность тока намагничивания на внутренней и внешней поверхностях проводника:

 

График зависимостей , где r изменяется от до

Вариант 2

По условию:

Вычислим магнитную индукцию по формуле:

Намагниченность материала проводника:

По теореме о циркуляции намагниченности:

, где - ток намагниченности.

Найдем дифференциал:

Т.к.

Поверхностная плотность тока намагничивания:

Найдем плотность тока намагничивания на внутренней и внешней поверхностях проводника:

График зависимостей , где r изменяется от до

 

 

Вариант 3

По условию:

Вычислим магнитную индукцию по формуле:

Намагниченность материала проводника:

По теореме о циркуляции намагниченности:

, где - ток намагниченности.

Найдем дифференциал:

Т.к.

Поверхностная плотность тока намагничивания:

Найдем плотность тока намагничивания на внутренней и внешней поверхностях проводника:

 

График зависимостей , где r изменяется от до

 

 

 

 

Вариант 4

По условию:

Вычислим магнитную индукцию по формуле:

Намагниченность материала проводника:

По теореме о циркуляции намагниченности:

, где - ток намагниченности.

Найдем дифференциал:

Т.к.

Поверхностная плотность тока намагничивания:

Найдем плотность тока намагничивания на внутренней и внешней поверхностях проводника:

 

График зависимостей , где r изменяется от до

 


Задача 2.2

Условие:

Проводник с током, равномерно распределённым по его поперечному сечению и имеющему плотность j, имеет форму трубки, внешний и внутренний радиусы которой равны R0 и R соответственно. Величина магнитной проницаемости проводника меняется по линейному закону от значения m1 до m2 в интервале радиусов от R до R1 и m3=const в интервале радиусов от R1 до R0 (R1=(R0+R)/2). Построить графически распределения модулей векторов индукции магнитного поля B и напряжённости магнитного поля H, а также вектора намагниченности J в зависимости от r в интервале от R до R0. Определить поверхностную плотность токов намагничивания i'п на внутренней и внешней поверхностях трубки и распределение объёмной плотности токов намагничивания i'об(r).

 

 

Таблица 2.2. Значения параметров m2/m1, m3/m1 и R0/R в зависимости от номера варианта.

 

Вариант m2/m1 m3/m1 R0/R
  2/1 2/1 2/1
  2/1 1/2 3/1
  2/1 3/2 2/1
  ½ 3/1 3/1
  ½ 1/2 2/1
  ½ 2/1 3/1

Решение:

Пусть , где

Напряженность поля вычислим по теореме о циркуляции вдоль контура l, совпадающего с окружностью радиуса r:

Эта формула будет справедлива для любых для всех вариантов задачи 2.2 за счет независимости напряженности магнитного поля от величины магнитной проницаемости.

 

Запишем выражение для магнитной проницаемости проводника:

при

при

 

 

Вариант 5

По условию:

Вычислим величины магнитных индукций по формуле:

Намагниченность материала проводника:

По теореме о циркуляции намагниченности:

, где - ток намагниченности.

Найдем дифференциал: Т.к.

Поверхностная плотность тока намагничивания:

;

Найдем плотность тока намагничивания на внутренней и внешней поверхностях проводника:

;

График зависимостей , где r изменяется от до

(при график ф-ций имеет излом)

 

Вариант 6

По условию:

Вычислим величины магнитных индукций по формуле:

Намагниченность материала проводника:

По теореме о циркуляции намагниченности:

, где - ток намагниченности.

Найдем дифференциал: Т.к.

Поверхностная плотность тока намагничивания:

;

Найдем плотность тока намагничивания на внутренней и внешней поверхностях проводника:

 

График зависимостей , где r изменяется от до

(при график ф-ций имеет разрыв)

 

Вариант 7

По условию:

Вычислим величины магнитных индукций по формуле:

Намагниченность материала проводника:

По теореме о циркуляции намагниченности:

, где - ток намагниченности.

Найдем дифференциал: Т.к.

Поверхностная плотность тока намагничивания:

;

Найдем плотность тока намагничивания на внутренней и внешней поверхностях проводника:

 

График зависимостей , где r изменяется от до

(при график ф-ций имеет разрыв)

 

 

Вариант 8

По условию:

Вычислим величины магнитных индукций по формуле:

Намагниченность материала проводника:

По теореме о циркуляции намагниченности:

, где - ток намагниченности.

Найдем дифференциал: Т.к.

Поверхностная плотность тока намагничивания:

;

Найдем плотность тока намагничивания на внутренней и внешней поверхностях проводника:

 

График зависимостей , где r изменяется от до

(при график ф-ций имеет разрыв)

 

Вариант 9

По условию:

Вычислим величины магнитных индукций по формуле:

Намагниченность материала проводника:

По теореме о циркуляции намагниченности:

, где - ток намагниченности.

Найдем дифференциал: Т.к.

Поверхностная плотность тока намагничивания:

;

Найдем плотность тока намагничивания на внутренней и внешней поверхностях проводника:

График зависимостей , где r изменяется от до

(при график ф-ций имеет разрыв)

 

Вариант 10

По условию: ;

Вычислим величины магнитных индукций по формуле:

Намагниченность материала проводника:

По теореме о циркуляции намагниченности:

, где - ток намагниченности.

Найдем дифференциал: Т.к.

Поверхностная плотность тока намагничивания:

;

Найдем плотность тока намагничивания на внутренней и внешней поверхностях проводника:

 

График зависимостей , где r изменяется от до

(при график ф-ций имеет излом или разрыв)

 

Задача 2.3

Условие:

По коаксиальному кабелю, радиусы внешнего и внутреннего проводника которого равны R0 и R соответственно, протекает ток I. Пространство между проводниками заполнено магнетиком, магнитная проницаемость которого меняется по закону m=f(r). Построить графически распределения модулей векторов индукции B и напряжённости H магнитного поля, а также вектора намагниченности J в зависимости от r в интервале от R до R0. Определить поверхностную плотность токов намагничивания i'п на внутренней и внешней поверхностях магнетика и распределение объёмной плотности токов намагничивания i'об(r). Определить индуктивность единицы длины кабеля.

 

 

Функция m=f(r) для чётных вариантов имеет вид: m=(R0n+rn)/(R0n+Rn).

Функция m=f(r) для нечётных вариантов имеет вид: m=(Rn+rn)/Rn.

 

Таблица 2.3. Значения параметров R0/R и n в зависимости от номера варианта.

 

Вариант R0/R n
  2/1  
  2/1  
  3/1  
  3/1  

 

Решение:

Напряженность поля вычислим по теореме о циркуляции вдоль контура l, совпадающего с окружностью радиуса r:

;

Эта формула будет справедлива для любых для всех вариантов задачи 2.3 за счет независимости напряженности магнитного поля от величины магнитной проницаемости.

Пусть h=1м – единица длины кабеля.

 

Вариант 11

По условию:

Вычислим магнитную индукцию по формуле:

Намагниченность материала проводника:

По теореме о циркуляции намагниченности:

, где - ток намагниченности.

Найдем дифференциал:

Т.к.

Поверхностная плотность тока намагничивания:

Для нахождения индуктивности единицы длины кабеля найдем поток вектора через продольное сечение кабеля единичной длины:

Индуктивность:

 

График зависимостей , где r изменяется от до :

Вариант 12

По условию:

Вычислим магнитную индукцию по формуле:

Намагниченность материала проводника:

По теореме о циркуляции намагниченности:

, где - ток намагниченности.

Найдем дифференциал: Т.к.

Поверхностная плотность тока намагничивания:

Найдем плотность тока намагничивания на внутренней и внешней поверхностях проводника:

Для нахождения индуктивности единицы длины кабеля найдем поток вектора через продольное сечение кабеля единичной длины:

Индуктивность:

График зависимостей , где r изменяется от до

Вариант 13

По условию:

Вычислим магнитную индукцию по формуле:

Намагниченность материала проводника:

По теореме о циркуляции намагниченности:

, где - ток намагниченности.

Найдем дифференциал: Т.к.

Поверхностная плотность тока намагничивания:

Для нахождения индуктивности единицы длины кабеля найдем поток вектора через продольное сечение кабеля единичной длины:

Индуктивность:

 

График зависимостей , где r изменяется от до :

Вариант 14

По условию:

Вычислим магнитную индукцию по формуле:

Намагниченность материала проводника:

По теореме о циркуляции намагниченности:

, где - ток намагниченности.

Найдем дифференциал: Т.к.

Поверхностная плотность тока намагничивания:

Найдем плотность тока намагничивания на внутренней и внешней поверхностях проводника:

Для нахождения индуктивности единицы длины кабеля найдем поток вектора через продольное сечение кабеля единичной длины

Индуктивность

График зависимостей , где r изменяется от до


Задача 2.4

Условие:

По коаксиальному кабелю, радиусы внешнего и внутреннего проводника которого равны R0 и R соответственно, протекает ток I. Пространство между проводниками заполнено магнетиком, магнитная проницаемость которого меняется по линейному закону от значения m1 до m2 в интервале радиусов от R до R1, и m3=const в интервале радиусов от R1 до R0 (R1=(R0+R)/2). Построить графически распределения модулей векторов индукции B и напряжённости H магнитного поля, а также вектора намагниченности J в зависимости от r на интервале от R до R0. Определить поверхностную плотность токов намагничивания i'п на внутренней и внешней поверхностях магнетика и распределение объёмной плотности токов намагничивания i'об(r). Определить индуктивность единицы длины кабеля.

 

 

Таблица 2.4. Значения параметров m2/m1, m3/m1, R0/R в зависимости от номера варианта.

 

Вариант m2/m1 m3/m1 R0/R
  2/1 2/1 2/1
  3/1 1/2 2/1
  2/1 3/1 2/1
  1/2 3/1 3/1
  1/3 1/2 2/1
  1/2 2/1 3/1

 

Решение:

Пусть , где

Напряженность поля вычислим по теореме о циркуляции вдоль контура l, совпадающего с окружностью радиуса r:

;

Эта формула будет справедлива для любых для всех вариантов задачи 2.4 за счет независимости напряженности магнитного поля от величины магнитной проницаемости.

 

Запишем выражение для магнитной проницаемости проводника:

при ;

при ;

 

Вариант 15

По условию:

Вычислим величины магнитных индукций по формуле:

;

Намагниченность материала проводника:

;

По теореме о циркуляции намагниченности: , где - ток намагниченности.

Найдем дифференциал: Т.к.

Поверхностная плотность тока намагничивания:

;

Найдем плотность тока намагничивания на внутренней и внешней поверхностях проводника:

;

Для нахождения индуктивности единицы длины кабеля найдем поток вектора через продольное сечение кабеля единичной длины:

Найдем индуктивность по формуле: ;

График зависимостей , где r изменяется от до

(при график ф-ций имеет излом или разрыв)

Вариант 16

По условию: ;

Вычислим величины магнитных индукций по формуле:

;

Намагниченность материала проводника:

По теореме о циркуляции намагниченности: , где - ток намагниченности.

Найдем дифференциал: Т.к.

Поверхностная плотность тока намагничивания: ; ;

Найдем плотность тока намагничивания на внутренней и внешней поверхностях проводника:

;

Для нахождения индуктивности единицы длины кабеля найдем поток вектора через продольное сечение кабеля единичной длины:

Найдем индуктивность по формуле: ;

График зависимостей , где r изменяется от до

(при график ф-ций имеет разрыв)

 

Вариант 17

По условию: ;

Вычислим величины магнитных индукций по формуле:

;

Намагниченность материала проводника:

;

По теореме о циркуляции намагниченности: , где - ток намагниченности.

; Найдем дифференциал: Т.к.

Поверхностная плотность тока намагничивания:



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-27 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: