Законы разнообразия Жаккара




1) видовое разнообразие территории (γ-разнообразие) прямо пропорционально разнообразию ее экологических условий;

2) видовое богатство сообщества (α-разнообразие) растет одновременно с расширением площади и уменьшается по мере увеличения однородности последней.

Правило географической обусловленности изменений разнообразия Де Кандоля-Уоллеса – по мере продвижения с севера на юг, как правило, наблюдается увеличение видового разнообразия сообществ.

Правило Дарлингтона – уменьшение площади острова в 10 раз, как правило, сокращает число живущих на нем животных вдвое.

Различает бедные и богатые видами биоценозы. В полярно арктические пустынях и северных тундрах при крайнем дефиците тепла, в безводных жарких пустынях, в водоемах, сильно загрязненных сточными водами, – везде, где одни или сразу не­сколько факторов среды далеко уклоняются от среднего оптимального для жизни уровня, сообщества сильно обеднены. Невелик видовой спектр и в тех биоценозах, которые часто подвергаются каким-либо катастрофическим воздей­ствиям, например ежегодному затоплению при разливах рек или регулярному уничтожению растительного покрова при пахоте, применении гербицидов и других антропогенных вмешательст­вах. И наоборот, везде, где условия абиотической среды прибли­жаются к оптимальным в среднем для жизни, возникают чрез­вычайно богатые видами сообщества. Примерами их могут служить тропические леса, коралловые рифы с их многообразным населением, долины рек в аридных районах и т. д. Видовое состав биоценозов, кроме того, зависит от длитель­ности их существования, истории каждого биоценоза. Молодые, только формирующиеся сообщества обычно включают меньший набор видов, чем давно сложившиеся, зрелые. Биоценозы, созданные человеком (поля, сады, огороды), также беднее видами, чем сходные с ними природные системы (лесное степные, луговые). Однако даже самые обедненные биоценозы включают, покрайней мере сотни видов организмов, принадлежащих к разным систематическим и экологическим группам. В агроценозе пшеничного поля, кроме пшеницы, входят, хотя бы в минимальном количестве, разнообразные сорняки, насекомые-вредители пшеницы и хищники, питающиеся фитофагами, мышевидные грызуны, беспозвоночные – обитатели почвы и напочвенного слоя, микроскопические организмы, патогенные грибы и многие другие. Богатые видами природные сообщества включают тысячи и даже десятки тысяч видов, объединяемых сложной системой разнообразных взаимосвязей.Высоким видовым разнообразием отличаются экотоныпереходные зоны между сообществами, а увеличение здесь видового разнообразия называется краевым эффектом. Общеизвестно, что на опушках обычно пышнее и богаче растительность, гнездится больше ви­дов птиц, встречается больше видов насекомых, пауков и т. п., чем в глубине леса. Здесь разнообразнее условия освещенности, влажности, температуры (лесотундра, лесо­степь).О значимости отдельного вида в видовой структуре биоце­ноза судят по нескольким показателям: обилие вида, частота встречаемости и степень доминирования. Обилие вида – чис­ло или масса особей данного вида на единицу площади или объема занимаемого им пространства. Частота встречаемос­ти – процентное отношение числа проб или учетных площа­док, где встречается вид, к общему числу проб или учетных площадок. Характеризует равномерность или неравномерность распределения вида в биоценозе. Степень доминирования – отношение числа особей данного вида к общему числу всех особей рассматриваемой группировки. Индекс разнообразия вычисляется по формуле Шеннона H=‑Σpilog2pi, где Σ – знак суммы, pi доля каждого вида в сообществ (по численности или массе), а log2pi – двоичный логарифма. В сообществе различают следующие виды: доминантные, пре­обладающие по численности, и «второстепенные», малочислен­ные и редкие. Среди доминантов особо выделяют эдификаторов (строителей) – это виды, определяющие микросреду (мик­роклимат) всего сообщества. Как правило, это растения.Доминанты господствуют в сообществе и составляют «видо­вое ядро» любого биоценоза. Доминантные, или мас­совые, виды определяют его облик, поддерживают главные свя­зи, в наибольшей мере влияют на местообитание. Обычно ти­пичные наземные биоценозы называют по доминирующим видам растений: сосняк-черничник, березняк волосистоосоковый и т. п. В каждом из них доминируют и определенные виды животных, грибов и микроорганизмов.Основными эдификаторами наземных биоценозов выступа­ют определенные виды растений: в еловых лесах – ель, в со­сновых – сосна, в степях – дерновинные злаки (ковыль, тип­чак и др.). Однако в некоторых случаях эдификаторами могут быть и животные. Например, на территориях, занятых коло­ниями сурков, именно их роющая деятельность определяет в основном и характер ландшафта и условия произрастания растений. В морях типичные эдификаторы сре­ди животных – рифообразующие коралловые полипы.Кроме относительно небольшого числа видов-доминантов, в состав биоценоза входит обычно множество малочисленных и даже редких форм. Они также очень важны для жиз­ни биоценоза. Они создают его видовое богатство, увеличивают разнообразие биоценотических связей и служат резервом для пополнения и замещения доминантов, т. е. придают биоценозу устойчивость и обеспечивают надежность его функционирова­ния в разных условиях.Со снижением числа видов обычно резко повышается оби­лие отдельных форм. В таких обедненных сообществах осла­бевают биоценотические связи и некоторые наиболее конку­рентоспособные виды получают возможность беспрепятственно размножаться.

Правило Тинемана – чем специфичнее условия среды, тем беднее видовой со­став сообщества и тем выше мо­жет быть численность отдель­ных видов. В бедных видами биоценозах числен­ность отдельных видов может быть чрезвычайно высокой. Доста­точно вспомнить вспышки массового размножения леммингов в тундрах или насекомых-вредителей в агроценозах. В наиболее богатых биоценозах практически все виды малочисленны. В тропических лесах редко можно встретить рядом несколько деревьев одного вида. В таких сообществах не происходит вспышек массового размножения отдельных видов и биоценозы отличаются высокой стабильностью.

Пространственная структура распределение организмов разных видов в пространстве (по вертикали и по горизонта­ли). Пространственная структура формируется прежде всего растительной частью биоценоза. Различают ярусность (верти­кальная структура биоценоза) и мозаичностъ (структура био­ценоза по горизонтали).

Ярусность особенно хорошо заметна в лесах уме­ренного пояса. Например, в еловых лесах четко выделяются древесный, травяно-кустарничковый и моховый ярусы. Пять или шесть ярусов можно выделить и в широколиственном лесу. В лесах всегда есть и межъярусные (внеярусные) расте­ния – это водоросли и лишайники на стволах и ветвях деревь­ев, высшие споровые и цветковые эпифиты, лианы и др. Ярусность выражена и в травянистых сообществах (лугах, степях, саваннах), но не всегда достаточно отчетливо. Животные также преимущественно приурочены к тому или иному ярусу растительности. Некоторые из них вообще не покидают соответствующего яруса. Например, среди насеко­мых выделяют следующие группы: обитатели почвы – геобий, наземного, поверхностного слоя – герпетобий, мохового яру­са – бриобий, травостоя – филлобий, более высоких ярусов – аэробий. Среди птиц есть виды, гнездящиеся только на земле (куриные, тетеревиные, коньки, овсянки и др.), другие – в кустарниковом ярусе (певчие дрозды, снегири, славки) или в кронах деревьев (зяблики, корольки, щеглы, крупные хищни­ки и др.). Расчлененность в горизонтальном направлении – мозаичность – свойственна практически всем фитоценозам, поэтому, в их пределах выделяют структурные единицы, которые полу­чили разные названия: микрогруппировки, микроценозы, микрофитоценозы, парцеллы и т. п.

Экологическая структура соотношение организмов разных экологических групп. Биоценозы со сходной экологической струк­турой могут иметь разный видовой состав. Это связано с тем, что одни и те же экологические ниши могут быть заняты сходными по экологии, но далеко не родственными видами. Такие виды называются замещающими или викарирующими.Экологическую структуру сообществ отражает также соот­ношение таких групп организмов, как гигрофиты, мезофиты и ксерофиты среди растений или гигрофилы, мезофилы и ксерофилы среди животных, а также спектры жизненных форм. Вполне естественно, что в сухих аридных условиях раститель­ность характеризуется преобладанием склерофитов и сукку­лентов, а в сильно увлажненных биотопах богаче представлены гигро- и даже гидрофиты. Важными характеристиками структуры биоценоза являются консорция, синузия и парцелла. Консорция струк­турная единица биоценоза, объединяющая автотрофные и ге­теротрофные организмы на основе пространственных (топи­ческих) и пищевых (трофических) связей вокруг централь­ного члена (ядра). Например, отдельно стоящее дерево или группа деревьев (растение-эдификатор) и связанные с ним организмы. Биоценоз – это система связанных между собой консорций.

Синузия структурная часть в вертикальном рас­членении биоценоза, образованная сходными по жизненной форме видами и ограниченная в пространстве (или во време­ни). Пространственно синузия может совпадать с горизон­том, пологом, слоем, ярусом биогеоценоза. Например, в сосновом лесу можно выделить синузию сосны, синузию брус­ники, синузию зеленых мхов и т. д.

Парцелла структурная часть в горизонтальном расчленении биоценоза, отличающа­яся от других частей составом и свойствами компонентов. Парцеллу выделяют (ограничивают) по ведущему элементу растительности. Например, участки широколиственных де­ревьев в хвойном лесу.

https://studopedia.ru/3_29412_struktura-biotsenoza.html

Любая популяция (вид) занимает определенное местообитание и определенную экологическую нишу.

Местообитание это территория или акватория, занимае­мая популяцией (видом), с комплексом присущих ей экологи­ческих факторов. Местообитание вида является компонентом его экологической ниши. Применительно к наземным живот­ным местообитание вида называется стация. Местообитание сообщества – биотоп.

Экологическая ниша совокупность всех факторов среды, в пределах которых возможно существование вида в природе. То есть экологическая ниша – это место вида в природе, вклю­чающее не только его положение в пространстве и отношение к абиотическим факторам, но и его функциональную роль в сообществе (прежде всего трофический статус). Местообита­ние – это как бы «адрес» организма, а экологическая ниша – это его «профессия». Для характеристики экологической ниши обычно использу­ют два важных показателя: ширина ниши и степень перекрывания ее с соседними. Экологические ниши разных видов могут быть разной ширины и перекрываться в различной степени. Разделение экологических ниш между видами происходит за счет приуроченности разных видов к разным местообитаниям, разной пищи и разному времени использования одного и того же местообитания. Принцип конкурентного исключения (принцип Гаузе) гласит: «Два вида не могут сосуществовать в одной и той же местности, если их экологические потребнос­ти идентичны. Такие виды обязательно должны быть разоб­щены в пространстве или во времени». Несовместимость конкурирующих видов еще раньше была подчеркнута Ч. Дарвином, который считал конкуренцию од­ной из важнейших составных частей борьбы за существование, играющей большую роль в эволюции видов. В опытах Г. Ф. Гаузе с культурами инфузорий Paramecium aurelia и Р. caudatum каждый из видов, помещенных отдельно в пробирки с сенным настоем, успешно размножался, достигая определенного уровня численности. Если же оба вида со сходным характером питания помещали совместно, то первое время наблюдался рост численности каждого из них, но затем количе­ство Р. caudatum постепенно сокращалось, и они исчезали из настоя, тогда как количество Р. aurelia оставалось постоянным. Победителем в конкурентной борьбе оказывается, как пра­вило, тот вид, который в данной экологической обстановке имеет хотя бы небольшие преимущества перед другим, т. е. больше приспособлен к условиям окружающей среды, посколь­ку даже близкие виды никогда не совпадают по всему экологи­ческому спектру. У близкородственных видов, живущих вместе, обычно на­блюдаются очень тонкие разграничения экологических ниш. Так, пасущиеся в африканских саваннах копытные по-разному используют пастбищный корм: зебры обрывают в основном верхушки трав, антилопы гну кормятся тем, что оставляют им зебры, выбирая при этом определенные виды растений, газели выщипывают самые низкие травы, а антилопы топи довольст­вуются высокими сухими стеблями, оставшимися после других травоядных. Такое же «разделение труда» в южноевропейских степях осуществляли когда-то дикие лошади, сурки и суслики. В наших зимних лесах насекомоядные птицы, кормящиеся на деревьях, также избегают конкуренции друг с другом за счет разного характера поиска.

Принцип «плотной упаковки» экологических ниш (дифференциации экологических ниш) – виды, объединенные в сообщество (экосистему), стремятся использовать все возможности для существования, представляемые средой и биотическим окружением, и максимизировать биопродуктивность в конкретном биотопе. Процесс упаковки ниш (называемый также дифференциацией экологических ниш) – один из основных процессов, ведущий к снижению конкуренции в сообществе в ходе сукцессии, заключающийся в разделе ресурсов, пространства, специализации биотических факторов (например, опылителей). Экологические ниши видов изменчивы в пространстве и во времени. Они могут быть резко разграничены в индивидуаль­ном развитии в зависимости от стадии онтогенеза, как, напри­мер у гусениц и имаго чешуекрылых, личинок и жуков май­ского хруща, головастиков и взрослых лягушек. В этом случае меняется и среда обитания, и все биоценотическое окружение. Группы видов в сообществе, обладающие сходными функ­циями и нишами одинакового размера, то есть роль которых в сообществе одинакова или сравнима, называются гильдиями. Например, лианы тропического леса представлены многими видами растений. Между видами внутри гильдии наблюдается особенно острая конкуренция. Виды, занимающие одинаковые ниши в разных географи­ческих областях, называются экологическими эквивалентами. Например, крупные кенгуру Австралии, бизоны Северной Америки, зебры и антилопы Африки и т. д. являются экологи­ческими эквивалентами. В настоящее время они значительно замещены коровами и овцами.

Правило обязательности заполнения экологических ниш – пустующая экологическая ниша, как правило, естественно заполняется. Примером заполнения «свободного» нишевого пространства может служить возникновение новых заболеваний (ВИЧ–инфекция) – победа над многими инфекционными заболеваниями «освободило место» для новых.

Правило географического оптимума – в центре видового ареала, как правило, имеются оптимальные для вида условия существования, которые ухудшаются к периферии области его обитания.

https://studopedia.ru/3_29413_mestoobitanie-i-ekologicheskaya-nisha.html

Основу возникновения и существования биоценозов представ­ляют отношения организмов, их связи, в которые они вступают друг с другом, населяя один и тот же биотоп. Эти связи определяют основные условия жизни видов в сообщест­ве, возможности добывания пищи и завоевания нового про­странства.

Классификации биоценотических отношений могут стро­иться с использованием разных принципов. Один из популяр­ных подходов – оценка возможного результата контактов двух особей. Для каждой из них результат принимается как поло­жительный, отрицательный или нейтральный. Сочетания ре­зультатов по 2 из 3-х возможных дают формальную схему из 6 вариантов, которая и положена в основу этой классификации.

0 0 Нейтрализм сожительство двух видов на одной террито­рии, не имеющее для них ни положительных, ни отрицатель­ных последствий. Например, белки и лоси не оказывают друг на друга значительных воздействий.

+ + Протокооперация взаимовыгодное, но не обязательное сосуществование организмов, пользу из которого извлекают все участники. Например, раки-отшельники и актинии. На раковине рака может поселяться коралловый полип актиния, который имеет стрекательные клетки, выделяющие яд. Акти­ния защищает рака от хищных рыб, а рак-отшельник, переме­щаясь, способствует распространению актиний и увеличению их кормового пространства.

+ + Мутуализм взаимовыгодное сожи­тельство, когда либо один из партнеров, либо оба не могут существовать без сожителя. Классический пример симбиотических отношений – ли­шайники, представляющие тесное сожительство гриба и водо­росли. Гриб получает вещества, ассимилирован­ные водорослями. Воду и минеральные вещества водоросли по­лучают из гиф гриба. Другой пример – травоядные копытные и целлюлозоразрушающие бактерии. Целлюлозоразрушающие бактерии обитают в желудке и кишечнике травоядных копыт­ных. Они продуцируют ферменты, расщепляющие целлюлозу, поэтому обязательно нужны травоядным, у которых таких фер­ментов нет. Травоядные копытные со своей стороны предос­тавляют бактериям питательные вещества и среду обитания с оптимальной температурой, влажностью и т. д. Известно сожитель­ство многих видов деревьев с микоризными грибами, бобовых растений – с клубеньковыми бактериями, фикси­рующими молекулярный азот воздуха.

+ 0 Комменсализм взаимоотношения, при которых один из партнеров получает пользу от сожительства, а другому при­сутствие первого безразлично. Различают две формы коммен­сализма:синойкия (квартирантство) итрофобиоз (нахлебничество). Примером синойкии являются взаимоотношения не­которых актиний и тропических рыбок. Тропические рыбки укрываются от нападения хищников среди щупалец актиний, которые имеют стрекательные клетки. Примером трофобиоза служат взаимоотношения крупных хищников и падалыциков. Падальщики, например гиены, грифы, шакалы, питаются ос­татками жертв, убитых и частично съеденных крупными хищ­никами – львами.

+ – Хищничество взаимоотношения, при которых один из участников (хищник) умерщвляет другого (жертва) и исполь­зует его в качестве пищи. Например, волки и зайцы. Состоя­ние популяции хищника тесно связано с состоянием популя­ции жертв. Однако при сокращении численности популяции одного вида жертв хищник переключается на другой вид. На­пример, волки могут использовать в качестве пищи зайцев, мышей, кабанов, косуль, лягушек, насекомых и т.д.

Частным случаем хищничества является каннибализм – умер­щвление и поедание себе подобных. Встречается, например, у крыс, бурых медведей, человека.

+ – Паразитизм взаимоотношения, при которых паразит не убивает своего хозяина, а длительное время использует его как среду обитания и источник пищи. К паразитам относятся: вирусы, патогенные бактерии, грибы, простейшие, паразити­ческие черви и др. Различают облигатных и факультативных паразитов. Облигатные паразиты ведут исключительно пара­зитический образ жизни и вне организма хозяина либо поги­бают, либо находятся в неактивном состоянии (вирусы). Фа­культативные паразиты ведут паразитический образ жизни, но в случае необходимости могут нормально жить во внешней среде, вне организма хозяина (патогенные грибы и бактерии).

К паразитам относится около 55 тыс. видов простейших, 7 тыс. видов членистоногих, 20 тыс. видов гельминтов, более 500 видов цветковых растений (кроме того, известно почти 1900 видов полупаразитов среди цветковых растений). На один вид хозяина приходятся десятки видов паразитов, даже без учета вирусов и прокариот.

Обычно связь хищник–жертва понимается в широком смысле, включая все формы добывания пищи: 1) истинное хищничество, или хищни­чество в узком смысле слова; 2) паразитизм; 3) собирательство и 4) пастьба.

– – Конкуренция взаимоотношения, при которых организмы соперничают друг с другом за одни и те же ресурсы внешней среды при недостатке последних. Организмы могут конкури­ровать за пищевые ресурсы, полового партнера, убежище, свет и т.д. Различают прямую и косвенную, межвидовую и внутри­видовую конкуренции.

Косвенная (пассивная) конкуренция – потребление ресурсов среды, необходимых обоим видам. Прямая (активная) конку­ренция – подавление одного вида другим.

Внутривидовая конкуренция – это соперничество между особями одного вида, межвидовая – между особями разных видов. Межвидовая конкуренция возникает между особями экологически близких видов. Ее результатом может быть либо взаимное приспособление двух видов, либо замещение популя­цией одного вида популяции другого вида, который пересе­ляется на другое место, переключается на другую пищу или вымирает. Конкуренция приводит к естественному отбору в направ­лении увеличения экологических различий между конкуриру­ющими видами и образованию ими разных экологических ниш.

0 – Аменсализм взаимоотношения, при которых один орга­низм воздействует на другой и подавляет его жизнедеятель­ность, а сам не испытывает никаких отрицательных влияний со стороны подавляемого. Например, ель и растения нижнего яруса. Плотная крона ели препятствует проникновению сол­нечных лучей под полог леса и подавляет развитие растений нижнего яруса. Частным случаем аменсализма являетсяаллелопатия (ан­тибиоз) – влияние одного организма на другой, при котором во внешнюю среду выделяются продукты жизнедеятельности одного организма, отравляя ее и делая непригодной для жиз­ни другого. Аллелопатия распространена у растений, грибов, бактерий. Например, гриб-пеницилл продуцирует вещества, подавляющие жизнедеятельность бактерий. Пеницилл исполь­зуют для получения пенициллина. Это первый открытый в ме­дицине антибиотик.

Мутуалистические и конкурентные отношения представля­ют собой основную сущность внутривидовых связей.

Другие классификации обращают внимание на иные аспекты биотических отношений, используя другие подходы. По классификации В. Н. Беклемишева, прямые и косвен­ные межвидовые отношения по тому значению, которое они могут иметь в биоценозе, подразделяются на 4 типа:

Трофические связи возникают между видами, когда один вид питается другим: живыми особями, мертвыми остатка­ми, продуктами жизнедеятельности. Трофическая связь мо­жет быть прямой и косвенной. Прямая связь проявляется при питании львов живыми антилопами, гиен трупами зебр, жу­ков-навозников пометом крупных копытных и т.д. Косвен­ная связь возникает при конкуренции разных видов за один пищевой ресурс.

Топические связи проявляются в изменении одним видом условий обитания другого вида. Например, под хвойным ле­сом, как правило, отсутствует травянистый покров.

Форические связи возникают, когда один вид участвует в распространении другого вида. Перенос животными семян, спор, пыльцы растений называется зоохория, а мелких осо­бей – форезия.

Фабрические связи заключаются в том, что один вид ис­пользует для своих сооружений продукты выделения, мертвые остатки или даже живых особей другого вида. Например, пти­цы используют для постройки гнезд ветви деревьев, шерсть млекопитающих, траву, листья, пух и перья других видов птиц т. п. Личинки ручейников строят домики из кусочков ветвей, коры или листьев растений, из раковин мелких видов катушек, захватывая даже раковинки с живыми моллюсками.

В ходе эволюции и развития экосистем существует тенден­ция к уменьшению роли отрицательных взаимодействий за счет положительных, увеличивающих выживание обоих ви­дов. Поэтому в зрелых экосистемах доля сильных отрицатель­ных взаимодействий меньше, чем в молодых.

https://studopedia.ru/3_29414_otnosheniya-organizmov-v-biotsenozah.html

Структура экосистем. С точки зрения трофической струк­туры экосистему можно разделить на два яруса – автотрофный и гетеротрофный (по Ю. Одуму, 1986).

1. Автотрофный ярус или «зеленый пояс» вклю­чающий растения или их части, содержащие хлорофилл, где преобладают фиксация энергии света, использование простых неорганических соединений и накопление сложных органи­ческих соединений.

2.Гетеротрофный ярус или «коричневый пояс» почв и осадков, разлагающихся веществ, корней и т.д., в котором преобладают использование, трансформация и разложение сложных соединений.

По Ю. Одуму, с биологической точки зрения в составе экосистемы удоб­но выделить следующие компоненты:

1) неорганические вещества, 2) органические вещества, 3) воздушную, водную и субстратную среду, 4) продуцентов, 5) макроконсументов, 6) микроконсументов.

1.Неорганические вещества(СО2, Н2О, N2, О2 минераль­ные соли и др.), включающиеся в круговороты.

2.Органические вещества (белки, углеводы, липиды, гуму­совые вещества и др.), связывающие биотическую и аби­отическую части.

3.Воздушная, водная и субстратная среда, включающая абиотические факторы.

4.Продуценты автотрофные организмы, способные про­изводить органические вещества из неорганических, используя фотосинтез или хемосинтез (растения и авто­трофные бактерии).

5.Консументы (макроконсументы, фаготрофы) – гетеро­трофные организмы, потребляющие органическое веще­ство продуцентов или других консументов (животные, гетеротрофные растения, некоторые микроорганизмы). Консументы бывают первого порядка (фитофаги, сапрофаги), второго порядка (зоофаги, некрофаги) и т.д.

6.Редуценты (микроконсументы, деструкторы, сапротрофы, осмотрофы) – гетеротрофные организмы, питающиеся органическими остатками и разлагающие их до минераль­ных веществ (сапротрофные бактерии и грибы). Следует учитывать, что и продуценты, и консументы час­тично выполняют функции редуцентов, выделяя в окружаю­щую среду минеральные вещества – продукты их метаболизма.

Таким образом, как правило, в любой экосистеме можно выделить три функциональные группы организмов: продуцен­тов, консументов и редуцентов. В экосистемах, образованных только микроорганизмами, консументы отсутствуют. В каж­дую группу входит множество популяций разных видов, насе­ляющих экосистему. В экосистеме пищевые и энергетические связи идут в на­правлении: продуценты →консументы→редуценты.

Пищевые цепи и сети. Питаясь друг другом, живые организ­мы образуют цепи питания.Цепь питания последователь­ность организмов, по которой передается энергия, заключен­ная в пище, от ее первоначального источника. Каждое звено цепи называетсятрофическим уровнем. Первый тро­фический уровень – продуценты (автотрофные организмы, преимущественно зеленые растения). Второй трофический уро­вень – консументы первого порядка (растительноядные живот­ные и паразиты продуцентов). Третий трофический уровень – консументы второго порядка (первичные хищники, питающи­еся растительноядными животными, и паразиты первичных консументов). Четвертый трофический уровень – консументы третьего порядка (вторичные хищники, питающиеся плотояд­ными животными, и паразиты вторичных консументов). В пищевой цепи редко бывает больше 4–6 трофических уров­ней. Последний трофический уровень – редуценты (сапротрофные бактерии и грибы). Они осуществляют минерализа­цию – превращение органических остатков в неорганические вещества. Редуценты могут представлять любой трофический уровень, начиная со второго.

Различают два типа пищевых цепей.

Цепи выедания (или пастбищные) пищевые цепи, начинающиеся с живых фотосинтезирующих организмов. Например, фитоплан­ктон зоопланктон рыбы микрофаги рыбы макрофаги птицы ихтиофаги.

Цепи разложения (или детритные) пище­вые цепи, начинающиеся с отмерших остатков растений, тру­пов и экскрементов животных. Например, детрит детритофаги хищники микрофаги хищники макрофаги. Таким образом, поток энергии, проходящий через экосистему, разби­вается как бы на два основных направления. Энергия к консументам поступает через живые ткани растений или через запасы мертвого органического вещества. Цепи выедания пре­обладают в водных экосистемах, цепи разложения – в экоси­стемах суши.

В сообществах пищевые цепи сложным образом перепле­таются и образуютпищевые сети.В состав пищи каждого вида входит обычно не один, а несколько видов, каждый из кото­рых в свою очередь может служить пищей нескольким видам. С одной стороны, каждый трофический уровень представлен многими популяциями разных видов, с другой стороны, мно­гие популяции принадлежат сразу к нескольким трофическим уровням. В результате благодаря сложности пищевых связей выпадение какого-то одного вида часто не нарушает равнове­сия в экосистеме.

6.6. Круговорот веществ и поток энергии в экосистеме. Биологическая продуктивность экосистем

Принцип единства организм-среда (основной биологический закон)– между живыми организмами и окружающей их средой существуют тесные взаимоотношения, взаимозависимости и взаимовлияния, обуславливающие их единство. В экосис­теме органические вещества синтезируются автотрофами из неорганических веществ. Затем они потребляются гетеротрофами. Выделенные в процессе жизнедеятельности или после гибели организмов (как автотрофов, так и гетеротрофов) орга­нические вещества подвергаются минерализации, то есть пре­вращению в неорганические вещества. Эти неорганические вещества могут быть вновь использованы автотрофами для синтеза органических веществ. Так осуществляетсябиологи­ческий круговорот веществ.В то же время, энергия не может циркулировать в пределах экосистемы.Поток энергии (передача энергии), заключенной в пище, в экосистеме осуществляется однонаправленно от авто­трофов к гетеротрофам. Жизнь на Земле продолжается, не прерываясь потому, что она протекает в системе биологических круговоротов вещества и поддерживается постоянным потоком солнечной энергии.По I закону термодинамики, энергия не исчезает бесследно, а переходит из одной формы в другую. Так, на первом трофическом уровне зелеными растениями солнечная энергия в процессе фотосинтеза преобразуется в энергию химических связей орга­нических веществ. Это валовая первичная продукция. По II закону термодинамики, любые превращения энергии сопровождаются переходом части ее в такое состояние, когда она уже не может быть использована для работы. Так, боль­шая часть поглощенной растениями, но не усвоенной энер­гии, рассеивается в окружающую среду в виде тепловой энер­гии. Часть образованных органических веществ окисляется, а высвобождающаяся энергия расходуется на поддержание всех метаболических процессов. Это так называемые траты на ды­хание. Эта энергия, в конечном счете, также рассеивается в виде тепла. Оставшаяся часть новообразованных органичес­ких веществ составляет прирост биомассы растений и называется чистой первичной продукцией. В чистую пер­вичную продукцию превращается только 1% поглощенной ра­стением энергии.До второго трофического уровня доходит только часть чис­той первичной продукции. Некоторая ее часть не исполь­зуется консументами первого порядка. Она может накапли­ваться или экспортироваться за пределы системы. Та часть, которую ассимилировали (потребили) консументы, час­тично тратится на дыхание, частично выделяется с экскре­ментами, а остальное накапливается в виде вторичной про­дукции.

Вторичная продукция на каждом последующем трофичес­ком уровне консументов и т.д.) составляет около 10% предыдущей (хотя на уровне хищников может быть выше – около 20%). В результате, чем длиннее пищевая цепь, тем мень­ше остается к ее концу накопленной в органическом веществе энергии. Поэтому число трофических уровней никогда не бы­вает слишком большим. Таким образом, при передаче энергии с одного трофичес­кого уровня на другой большая часть энергии рассеивается в виде тепла (в соответствии со вторым законом термодинами­ки), и только около 10 % от первоначального количества пере­дается по пищевой цепи.

Правило десяти процентов – на каждый следующий трофический уровень переходит примерно 10 % вещества и энергии предыдущего уровня. Пищевые цепи можно представить в виде эко­логических пирамид. Различают три основных типа экологи­ческих пирамид.

Пирамида чисел(пирамида Элтона) отражает уменьшение численности организмов от продуцентов к консументам.

Пирамида биомасс показывает изменение биомасс на каж­дом следующем трофическом уровне: для наземных экосис­тем пирамида биомасс сужается кверху, для экосистемы океа­на – имеет перевернутый характер (сужается книзу), что свя­зано с быстрым потреблением фитопланктона консументами.

Пирамида энергии (продукции) имеет универсальный харак­тер и отражает уменьшение количества энергии, содержащей­ся в продукции, создаваемой на каждом следующем трофи­ческом уровне. Прирост биомассы в экосистеме, созданной за единицу вре­мени, называетсябиологической продукцией (продуктивностью). Различают первичную и вторичную продукцию сообщества.

Первичная продукция биомасса, созданная за единицу вре­мени продуцентами. Она делится на валовую и чистую.Вало­вая первичная продукция (общая ассимиляция) – это общая биомасса, созданная растениями в ходе фотосинтеза. Часть ее расходуется на поддержание жизнедеятельности растений – траты на дыхание (40–70 %). Оставшаяся часть составляетчи­стую первичную продукцию (чистая ассимиляция), которая в дальнейшем используется консументами и редуцентами, или накапливается в экосистеме.

Вторичная продукция биомасса, созданная за единицу времени консументами. Она различна для каждого следующе­го трофического уровня. Масса организмов определенной группы (продуцентов, консументов, редуцентов) или сообщества в целом называетсябио­массой. Самой высокой биомассой и продуктивностью обла­дают тропические дождевые леса, самой низкой – пустыни и тундры.

Если в экосистеме скорость прироста растений (образова­ния первичной продукции) выше темпов переработки ее кон­сументами и редуцентами, то это ведет к увеличению биомас­сы продуцентов. Если при этом присутствует недостаточная утилизация продуктов спада в цепях разложения, то происхо­дит накопление мертвого органического вещества. Это проявляется в заторфовывании болот, образовании мощной лесной подстилки и т.п. В стабильных экосистемах биомасса остается постоянной, так как практически вся продукция расходуется в цепях питания.

https://studopedia.ru/3_29415_struktura-i-funktsionirovanie-ekosistem.html

Экология(от греч. oikos – дом, жилище, местообитание и logos – учение)– наука о взаимоотношени­ях живых организмов между собой и со средой их обитания.

Экология – биологическая наука, синтезирующая данные естественных и общественных наук о природе и взаи­модействии природы и общества*. Термин «экология» впервые ввел немецкий зоолог Эрнст Геккель в книге «Всеобщая морфология организмов» (1866).





©2015-2018 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Нарушение авторских прав и Нарушение персональных данных

Обратная связь

ТОП 5 активных страниц!