Физиологическое действие





ВИЛИ

- (10,6 и 9,6 мкм) вызывает:
- термический ожог ткани;
- коагуляцию биологических тканей;
- обугливание, сгорание, испарение.

 

 

НИЛИ

- изменение в тканях биофизических и химических процессов;
- изменение обменных процессов;
- изменение метаболизма (биоактивация);
- морфологические и функциональные изменения в нервной ткани;
- стимуляция сердечно-сосудистой системы;
- стимуляция микроциркуляции;
- повышение биологической активности клеточных и тканевых элементов кожи, активизирует внутриклеточные процессы в мышцах, окислительно-восстановительные процессы, образование миофибрилл;
- повышает устойчивость организма.


Лечебное действие


ВИЛИ

- антисептическое действие, образование коагуляционной пленки, защитный барьер от токсических агентов;
- резание тканей (лазерный скальпель);
- сварка металлических протезов, ортодонтических аппаратов.

 

 

НИЛИ

- противовоспалительное, снижение отечности ткани;
- анальгезирующее;
- стимуляция репаративных процессов;
- рефлексогенное воздействие - стимуляция физиологических функций;
- генерализованное воздействие - стимуляция иммунного ответа.


 

 

37. Спектрофотометрия – область измерительной техники, разрабатывающая методы и приборы для определения спектральных характеристик объектов. Позволяет определить содержание ферментов, гормонов, белков, витаминов, многих неорга­нических веществ, анализируют ка­чественный и количественный состав мазков крови и т. д.

Важным принципом спектрофотометрии является принцип оптических плотностей, в соответствии с которым величина оптической плотности смеси соединений, подчиняющихся закону Бугера-Ламберта-Бера и не вступающих в химическое взаимодействие друг с другом, равна сумме оптических плотностей этих соединений.

 

38. Рассеяние света.

При прохождении через вещественную среду световая волна постепенно ослабляется. Это происходит в связи с рассеянием и поглощением света. Рассеяние света происходит в неоднородных средах при условии, что размеры неоднородностей соизмеримы с длиной волны света. Если неоднородность среды образована посторонними частицами, беспорядочно распределенными в массе среды, то рассеяние света называют явлением Тиндаля, а среды – мутными, например мелкий туман, дым, различные взвеси и эмульсии и т.п. Это явление можно наблюдать, например, когда узкий пучок солнечных лучей проходит сквозь запыленную атмосферу: свет рассеивается на пылинках и весь пучок становится видимым при наблюдении с любой стороны.

Длина волны света при рассеянии не изменяется, а интенсивность рассеянного света тем выше, чем меньше размеры этих неоднородностей сравнительно с длиной волны. Интенсивность рассеяния зависит также от длины волны света: короткие волны рассеиваются значительно сильнее, чем длинные. Можно считать, что интенсивность рассеянного света обратно пропорциональна примерно второй степени длины волны для более крупных и третьей степени – для более мелких частиц. Поэтому, например, мелкодисперсный туман имеет синий цвет, а состоящий из более крупных капелек – белый.

Рассеяние света может происходить также и в однородной среде на мгновенных неоднородностях плотности вещества, образующихся в связи с тепловым движением атомов и молекул, например в чистом газе в процессе теплового движения молекулы в различные моменты сближаются в одних точках объема газа и разреживаются в других. Этот вид рассеяния называется молекулярным рассеянием. Интенсивность рассеянного света обратно пропорциональна четвертой степени длины волны падающего света:

; (закон Рэлея).

В связи с этим, например, свечение неба наблюдается сине-голубым, а прямое солнечное излучение приобретает желто-красный оттенок, особенно при восходе и заходе Солнца, когда это излучение проходит более длинный путь в атмосфере.

При рассеянии света в однородных жидкостях и кристаллах в рассеянном свете кроме падающей волны частотой , отличающейся от нее на определенную величину , характерную для молекулярной структуры данного вещества:

.

Этот вид молекулярного рассеяния называется комбинационным рассеянием света и имеет значение для изучения структуры вещества.

При рассеянии света энергия сохраняет свою электромагнитную природу. При поглощении света она переходит в другие виды внутренней энергии, при этом в веществе могут происходить различные явления: повышение интенсивности теплового движения (тепловой эффект), возбуждение и ионизация атомов и молекул, активация молекул (фотохимический эффект) и т.п.

 

39. Поглощение света. Закон Бугера.

Закон поглощения в однородной среде для параллельного пучка монохроматического света был установлен Н. Бугером:

В каждом последующем слое среды одинаковой толщины поглощается одинаковая часть потока энергии падающей на него световой волны, независимо от его абсолютной величины.

 

40. Закон Бугера-Ламберта-Бера – закон независимости коэффициента поглощения от концентрации анализируемых веществ в растворе

Оптическая плотность и коэффициент пропускания вещества.

 

41. Методы определения концентрации растворов. Метод сравнения и калибровочного графика.

 

42. Поляризация света.Свет естественный и поляризованный.

 

43. Явление двойного лучепреломления. Дихроизм.

При устройстве поляризаторов для света обычно используется явление д во йного лучепреломления в кристаллах. Для кристаллов характерна анизотропия, т. е. различие физических свойств, в том числе и оптических, по определенным направлениям в кристалле. Оптическая анизотропия, в частности разница в скорости распространения света, связана с тем, что вынужденные колебания электронов падающей све­товой волной в определенных направлениях возбуждаются легче, чем в других, и тогда скорость распространения результирующей волны кристалла в этих направлениях отличается. Направление, по которому оптические свойства кристалла наиболее отличаются, называют оптической осью кристалла и ориентируют относительно характерных особенностей его геометрической формы. Оптическую ось можно провести через любую точку кристалла. Плоскость, проведенная через падающий луч и оптическую ось, проведенную в точке падения, называется главной плоскостью кристалла.

В связи с оптической анизотропией у определенных кристаллов на­блюдается явление двойного лучепреломления, которое заключается в том, что узкий световой пучок (А Б на рис. 58, а), падающий на поверхность кристалла, разделяется на два пучка {БД и БЕ на рис. 58, а), проходящие сквозь кристалл по несколько различным на­правлениям и по интенсивности каждый равный половине интенсивно­сти падающего пучка. Если сквозь такой кристалл смотреть на предмет, то его контуры будут наблюдаться сдвоенными.

С точки зрения принципа Гюйгенса двойное лучепреломление объясняется тем, что в анизотропном кристалле при падении световой волны в каждой точке его поверхности возбуждаются одновременно две элементарные волны: одна, как обычно, - сферическая, а вторая - эллипсоидальная. В связи с этим в кристалле образуются две результирующие волны, называемые обыкновенной о и необыкновенной е, имеющие различные фазовые скорости и Рис. 59. двойное лучепреломление.

 

направления распростра­нения в кристалле: АВ — фронт падающей плоской волны, MN- оптическая ось, относительно которой ориентирована эллипсоидальная элементарная волна, DC - фронт обыкновенной и FC - необыкновенной волны в кристалле).

Обе волны полностью поляризованы, колебания светового вектора необыкновенной волны происходят в главной плоскости кристалла, а обыкновенной - в перпендикулярной плоскости. Одна из этих волн (чаще необыкновенная) и используется в поляризационных приборах в качестве источника поляризованного света (вторая волна гасится).

В прецизионных приборах для этой цели используется так называемая призма Николя, изготовляемая из кристалла кальцита («ис­ландский шпат»).

Существуют двоякопреломляющие кристаллы, ко­торые обладают свойством дихроизма, т. е. различно­го поглощения света в за­висимости от направления плоскости его колебаний. В этих кристаллах обыкно­венные лучи почти пол­ностью поглощаются и свет, прошедший через кристалл, является полностью поля­ризованным. На этом явлении основано устройство поляризационных фильтров, или поляроидов. Они представляют собой прозрачную пленку, которая содержит кристаллы поляризующего свет дихроичного вещества, например герапатипа (сернокислый йодхинин). В процессе изготовления пленки кристаллы ориентируются так, чтобы их оптические оси были параллельны. В результате они дают поляризованный свет с колебаниями в одной определенной плоскости.

 

44. Исследование микроструктур в поляризационном свете.

В основе приборов, используемых для исследований в поляризованном свете, лежит система из поляризатора и анализатора, расположенных вдоль направления световых лучей, между которыми помещается исследуемый объект.

Поляризованный свет приме­няется при исследовании оптиче­ски анизотропных элементов раз­личных структур, в частности тканей организма. Во многих случаях при этом возможно установить рас­положение и строение элементов структуры, которые не выявляются при микроскопировании в естест­венном свете.

Оптическая анизотропия наблю­дается, например, у мышечных, соединительнотканных (коллагеновых) нервных волокон.

Поэтому название скелетных мышц - поперечнополосатые - связано с тем, что при мик­роскопировании в естественном свете волокно наблюдается состоя­щим из чередующихся более темных и более светлых участков, это и придает ему поперечную исчерченность. Исследование мышечного волокна в поляризованном свете обнаруживает, что более темные участки являются анизотропными, тогда как более светлые – изотропными, что и является причиной их различия в естествен­ном свете.

Коллагеновые волокна це­ликом анизотропны, оптиче­ская ось их расположена вдоль оси волокна. Мицеллы в мякотной оболочке нейрофибрилл также анизотропны, но оптические оси их расположены в радиальных направле­ниях.

Для гистологического исследования этих структур применяется поляризационный микроскоп.

 

45. Вращение плоскости колебаний поляризованного света.

Некоторые кристаллы, растворы многих органических веществ (сахара, кислоты, алколоиды и др.), а также некоторые жидкости обнаруживают свойство вращать плоскость колебаний поляризован­ного света. Такие вещества называются оптически активными.

Явление заключается в том, «то при прохождении через такое ве­щество поляризованного света плоскость его колебаний постепенно вращается вокруг оси светового пучка на угол пропорциональный толщине пройденного светом слоя вещества. При этом у каждого оптически активного вещества имеется две разновидности: лево- и правовращающая (против и по часовой стрелке, если смотреть навстречу свету), состоящие из молекул, структура которых представляет зер­кальное отображение одна другой.

Поляриметрия – метод исследования, использующий явление вращения плоскости колебаний поляризованного света.

 

46. Специальные методы световой микроскопии(метод светлого и темного поля).

Метод тёмного поля в проходящем свете (Dark-field microscopy) используется для получения изображений прозрачных неабсорбирующих объектов, которые не могут быть видны, если применить метод светлого поля. Зачастую это биологические объекты. Свет от осветителя и зеркала направляется на препарат с конденсором специальной конструкции — конденсором тёмного поля. По выходе из конденсора основная часть лучей света, не изменившая своего направления при прохождении через прозрачный препарат, образует пучок в виде полого конуса и не попадает в объектив (который находится внутри этого конуса). Изображение в микроскопе формируется при помощи лишь небольшой части лучей, рассеянных микрочастицами находящегося на предметном стекле препарата внутрь конуса и прошедшими через объектив. Темнопольная микроскопия основана на эффекте Тиндаля (Tyndall effect), известным примером которого служит обнаружение пылинок в воздухе при освещении их узким лучом солнечного света.

В поле зрения на тёмном фоне видны светлые изображения элементов структуры препарата, отличающихся от окружающей среды показателем преломления. У крупных частиц видны только светлые края, рассеивающие лучи света. Используя этот метод, нельзя определить по виду изображения, прозрачны частицы или непрозрачны, больший или меньший показатель преломления они имеют по сравнению с окружающей средой. При проведении темнопольного исследования предметные стекла должны быть не толще 1,1-1,2 мм, покровные 0,17 мм, без царапин и загрязнений. При приготовлении препарата следует избегать наличия пузырьков и крупных частиц (эти дефекты будут видны ярко святящимися и не позволят наблюдать препарат).

Метод светлого поля в проходящем свете применяется при изучении прозрачных препаратов с включенными в них абсорбирующими (поглощающими свет) частицами и деталями. Это могут быть, например, тонкие окрашенные срезы животных и растительных тканей, тонкие шлифы минералов и т. д. В отсутствие препарата пучок света из конденсора, проходя через объектив, даёт вблизи фокальной плоскости окуляра равномерно освещенное поле. При наличии в препарате абсорбирующего элемента происходит частичное поглощение и частичное рассеивание падающего на него света, что и обусловливает появление изображения. Возможно применение метода и при наблюдении неабсорбирующих объектов, но лишь в том случае, если они рассеивают освещающий пучок настолько сильно, что значительная часть его не попадает в объектив.

Метод косого освещения - разновидность предыдущего метода. Отличие между ними состоит в том, что свет на объект направляют под большим углом к направлению наблюдения. Иногда это помогает выявить «рельефность» объекта за счёт образования теней.

Метод светлого поля в отражённом свете применяется при исследовании непрозрачных отражающих свет объектов, например шлифов металлов или руд. Освещение препарата (от осветителя и полупрозрачного зеркала) производится сверху, через объектив, который одновременно играет и роль конденсора. В изображении, создаваемом в плоскости объективом совместно с тубусной линзой, структура препарата видна из-за различия в отражающей способности её элементов; на светлом поле выделяются также неоднородности, рассеивающие падающий на них свет.

 

47. Метод фазового контраста. Поляризационная микроскопия.

Метод фазового контраста — метод предназначеный для получения изображений прозрачных и бесцветных объектов, невидимых при наблюдении по методу светлого поля. К таковым относятся, например, живые неокрашенные животные ткани. Суть метода в том, что даже при очень малых различиях в показателях преломления разных элементов препарата световая волна, проходящая через них, претерпевает разные изменения по фазе (приобретает т. н. фазовый рельеф). Не воспринимаемые непосредственно ни глазом, ни фотопластинкой, эти фазовые изменения с помощью специального оптического устройства преобразуются в изменения амплитуды световой волны, т. е. в изменения яркости («амплитудный рельеф»), которые уже различимы глазом или фиксируются на фоточувствительном слое. Иными словами, в получаемом видимом изображении распределение яркостей (амплитуд) воспроизводит фазовый рельеф. Получаемое таким образом изображение называется фазово-контрастным. Фазово-контрастное устройство может быть установлено на любом световом микроскопе и состоит из: набора объективов со специальными фазовым пластинками; конденсора с поворачивающимся диском. В нем установлены кольцевые диафрагмы, соответствующие фазовым пластинкам в каждом из объективов; вспомогательного телескопа для настройки фазового контраста.Вместо окуляра вставляют вспомогательный телескоп. Настраивают его так, чтобы были резко видны фазовая пластинка (в виде темного кольца) и кольцевая диафрагма (в виде светлого кольца того же диаметра). С помощью регулировочных винтов на конденсоре совмещают эти кольца. Вынимают вспомогательный телескоп и вновь устанавливают окуляр.

Благодаря применению этого способа микроскопии контраст живых неокрашенных микроорганизмов резко увеличивается и они выглядят темными на светлом фоне (позитивный фазовый контраст) или светлыми на темном фоне (негативный фазовый контраст). Фазово-контрастная микроскопия применяется также для изучения клеток культуры ткани, наблюдения действия различных вирусов на клетки и т. п. В этих случаях часто применяют биологические микроскопы с обратным расположением оптики - инвертированные микроскопы. У таких микроскопов объективы расположены снизу, а конденсор - сверху.

Поляризационная микроскопия – это метод наблюдения в поляризованном свете для микроскопического исследования препаратов, включающих оптически анизотропные элементы (или целиком состоящих из таких элементов). Таковыми являются многие минералы, некоторые животные и растительные ткани. Оптические свойства анизотропных микрообъектов различны в различных направлениях и проявляются по-разному в зависимости от ориентации этих объектов относительно направления наблюдения и плоскости поляризации света, падающего на них. Наблюдение можно проводить как в проходящем, так и в отражённом свете. Свет, излучаемый осветителем, пропускают через поляризатор. Сообщенная ему при этом поляризация меняется при последующем прохождении света через препарат (или отражении от него). Эти изменения изучаются с помощью анализатора и различных оптических компенсаторов. Анализируя такие изменения, можно судить об основных оптических характеристиках анизотропных микрообъектов: силе двойного лучепреломления, количестве оптических осей и их ориентации, вращении плоскости поляризации, дихроизме.

 

48. Метод интерференционного контраста. Метод исследования в свете люминесценции

М.и.к. (интерференционная микроскопия) состоит в том, что каждый луч раздваивается, входя в микроскоп. Один из полученных лучей направляется сквозь наблюдаемую частицу, другой — мимо неё по той же или дополнительной оптической ветви микроскопа. В окулярной части микроскопа оба луча вновь соединяются и интерферируют между собой. Один из лучей, проходя через объект, запаздывает по фазе (приобретает разность хода по сравнению со вторым лучом). Величина этого запаздывания измеряется компенсатором. Можно сказать, что метод интерференционного контраста сходен с методом фазового контраста — они оба основаны на интерференции лучей, прошедших через микрочастицу и миновавших её. Как и фазово-контрастная микроскопия, этот метод дает возможность наблюдать прозрачные и бесцветные объекты, но их изображения могут быть и разноцветными (интерференционные цвета). Оба метода пригодны для изучения живых тканей и клеток и применяются во многих случаях именно с этой целью. Главное отличие интерференционной микроскопии от метода фазового контраста – это возможность измерять разности хода, вносимые микрообъектами. Метод интерференционного контраста часто применяют совместно с другими методами микроскопии, в частности с наблюдением в поляризованном свете. Его применение в сочетании с микроскопией в ультрафиолетовых лучах позволяет, к примеру, определить содержание нуклеиновых кислот в общей сухой массе объекта.

Метод исследования в свете люминесценции (люминесцентная микроскопия, или флуоресцентная микроскопия) состоит в наблюдении под микроскопом зелено-оранжевого свечения микрообъектов, которое возникает при их освещении сине-фиолетовым светом или не видимыми глазом ультрафиолетовыми лучами. В оптическую схему микроскопа вводятся два светофильтра. Один из них помещают перед конденсором. Он пропускает от источника-осветителя излучение только тех длин волн, которые возбуждают люминесценцию либо самого объекта (собственная люминесценция), либо специальных красителей, введённых в препарат и поглощённых его частицами (вторичная люминесценция). Второй светофильтр, который установлен после объектива, пропускает к глазу наблюдателя (или на фоточувствительный слой) только свет люминесценции. В люминесцентной микроскопии используют освещение препаратов как сверху (через объектив, который в этом случае служит и конденсором), так и снизу, через обычный конденсор. Наблюдение при освещении сверху иногда называют «люминесцентной микроскопией в отражённом свете» (этот термин условен — возбуждение свечения препарата не является простым отражением света). Его часто используют совместно с наблюдением по фазово-контрастному методу в проходящем свете. Метод нашел широкое применение в микробиологии, вирусологии, гистологии, цитологии, в пищевой промышленности, при исследовании почв, в микрохимическом анализе, в дефектоскопии. Такое многообразие применений объясняется очень высокой цветовой чувствительностью глаза и высокой контрастностью изображения самосветящегося объекта на тёмном нелюминесцирующем фоне. Кроме того, информация о составе и свойствах исследуемых веществ, которую можно получить, зная интенсивность и спектральный состав их люминесцентного излучения, имеет огромную ценность.

 

49. Устройство микроскопа. Характеристики микроскопа.

Микроскоп – оптический прибор, предназначенный для получения увеличенных изображений малых объектов, невидимых невооруженным глазом.

Оптическая схема микроскопа состоит из двух частей: объектив и окуляр.

Оптическая схема состоит из 2 частей: осветительной и наблюдательной. В осветительную часть входит: зеркало 1, конденсатор с ирисовой диафрагмой 3 и объемный светофильтр 4. В наблюдательную – объектив, призам 6 и окуляр, соединненые в тубусе микроскопа.

 

50. Виды и свойства мышечной ткани.

Мышечная ткань – совокупность мышеч­ных клеток (волокон), внеклеточного вещества (коллаген, эластина и др.) и густой сети нервных волокон и кровеносных сосу­дов.

По строению:

гладкие - мышцы полых органов, стенки сосудов;

поперечно-полосатые — скелет­ные, мышцы сердца.

Свойства:

а) Упругость - свойство тел менять размеры и форму под действием сил и самопроизвольно восстанавливать их при прекращении внешних воздействий.

Упругость тел обусловлена силами взаимодействия его атомов и молекул. При снятии внешнего воздействия тело самопроизвольно возвращается в исходное состояние.

б) Вязкость внутренне трение среды.

в) Вязкоупругость – это свойство материалов твердых тел сочетать упругость и вязкость.

г) Деформация относительное изменение длины: ,

где l -начальная длина, - значение удлинения, может изменять знак.

д) Напряжение механическое - мера внутренних сил, возника­ющих при деформации материала. Для однородного стержня: , где S ~ площадь сечения, F - сила, приложенная к стержню.

 

51. Сократительный аппарат мышц.

 

52. Основные положения модели скользящих нитей.

1. Длины нитей актина и миозина в ходе сокращения не меняются.

2. Изменение длины саркомера при сокращении - результат относительного продольного смещения нитей актина и миозина.

3. Поперечные мостики, отходящие от миозина, могут при­соединяться к комплементарным центрам актина.

4. Мостики прикрепляются к актину не одновременно.

5. Замкнувшиеся мостики подвергаются структурному пе­реходу, при котором они развивают усилие, после чего проис­ходит их размыкание.

6. Сокращение и расслабление мышцы состоит в нарастании и последующем уменьшении числа мостиков, совершающих цикл замыкaние - размыкание.

7. Каждый цикл связан с гидролизом одной молекулы АТФ.

8. Акты замыкания-размыкания мостиков происходят не за­висимо друг от друга.

 

53. Биомеханика мышц.

 

54. Электромеханическое сопряжение – это цикл последователь­ных процессов, начинающийся с возникновения потенциала действия ПД на сарколемме (клеточной мембране) и заканчивающийся сократительным ответом мышцы.

Идёт в две ступени: в начале небольшой входящий поток кальция активирует мембраны СР, способствуя большому выбросу кальция из внутриклеточного депо, а затем в результате этого выброса происходит сокращение саркомера.

 

55. Стадии дыхания:

1) внешнее дыхание, включающее вентиляцию легких и диффузию газов в них;

2) транспорт 02 и С02 кровью;

3) внутреннее дыхание, подразделяющееся на диффузию газов в тканях и клеточное дыхание.

Газообмен в легких. В легких совершается обмен кислородом, углекислым газом, азотом между организмом и внешней средой. Благодаря работе дыхатель­ных мышц легочные альвеолы обмениваются этими газами с атмосферой, что обеспечивает относительное постоянство концентраций 02 и особенно С02 в аль­веолярной газовой смеси.

 

56. Сурфактант. За счет сурфактанта диффу­зионный путь чуть-чуть удлиняется, что приводит к незначительному сниже­нию концентрационного градиента на АКМ. Однако без сурфактанта дыхание вообще было бы невозможно, так как стенки альвеолы слиплись бы под действием значительного поверхностного натяжения, присущего альвеолярному эпителию. Сурфактант снижает поверхностное натяжение альвеолярных стенок, причем коэффициент поверхностного натяжения зависит от толщины пленки, выстилающей альвеолы: на вдохе она тоньше, на выдохе — толще.Колебания диффузионного пути на вдохе и выдохе не нарушают газообмена, так как не выходят за пределы сотых долей микрона.

 

57. Биомеханика внешнего дыхания

Газообмен между альвеолярной газовой смесью и атмосферным воздухом, обеспечивающий эффективную диффузию кислорода и углекислого газа через альвеолокапиллярную мембрану осуществляется благодаря работе аппарату вентиляции, состоящему из двух анатомофизиологических образований: грудной клетки с дыхательными мышцами и легких с дыхательными путями.

 

58. Вентиляция легких. Акты вдоха и выдоха.

Последовательность биофизических процессов, обеспечивающих вентиляцию легких, можно представить в виде следующей схемы:

акт вдоха: поступление нервного импульса к дыхательным мышцам синаптическая (нервно-мышечная) передача сокращение дыхательных мышц увеличение объема грудной полости увеличение объема легких снижение давления в легких (по закону Бойля—Мариотта) всасывание воздуха из атмосферы в легкие;

акт выдоха: расслабление дыхательных мышц (вслед за сокращением при вдохе) уменьшение объема грудной полости уменьшение объема лёгких повышение давления в легких (по закону Бойля-Мариотта) выдав­ливание воздуха из легких в атмосферу.

Основной вклад в эластические свойства грудной клетки вносят упругость ре­бер, особенно их хрящевых частей, и дыхательных мышц.

 

59. Эластическая тяга легких – сила упругости в легких, которая заставляет их спадаться на выдохе. Она имеет два основных компонента.

Во-пер­вых, тканям легких присущи упругие свойства (они зависят не только от коэффи­циента упругости их компонентов как таковых, но и от степени кровенаполнения легких, от тонуса гладкомышечных волокон и т. д.).

Вторым компонентом ЭТЛ является сила поверхностного натяжения, воз­никающая на границе между альвеолярной газовой смесью и внутренней по­верхностью альвеол, выстланной слоем жидкости. Вторая часть (30—50%) приходится на силу упругости, развивающуюся при деформациях легочной паренхимы, воздухоносных путей, тканей грудной клетки.

Зависимость силы упругости, возникающей при деформациях легочной парен­химы и стенок воздухоносных путей, от величины деформации описывается ли­нейными функциями. Упругость обусловлена преимущественно эластическими волокнами, растягивающимися в легочной паренхиме при дыхании (на вдохе). При этом коллагеновые волокна, уложенные волнообразно («со слабиной»), только распрямляются, но не растягиваются. Их миссия состоит в обеспечении прочности (при перерастяжении легочной ткани).

 

60. Легочный резистанс – сопротивление воздухоносных путей колебаниям потока воздуха в них. Оно составляет сравнительно небольшую величину - .

Растяжимость – величина, обратная легочному резистансу. У взрослого человека она составляет

200 см3 , а у детей - меньше. Растяжимость может увеличиваться.

 

61. Уравнение Бернулли. Статическое и динамическое давления

Выражение выведено швейцарским физиком Д. Бернулли (1700—1782; опубликовано в 1738 г.) и называется уравнением Бернулли. Как видно из его вывода, уравнение Бернулли — выражение закона сохранения энергии применительно к установившемуся течению идеальной жидкости. Оно хорошо выполняется и для реальных жидкостей, внутреннее трение которых не очень велико.Величина р в формуле называется статическим давлением (давление жидкости на поверхность обтекаемого ею тела), величина v2/2 — динамическим давлением. Как уже указывалось выше, величина gh представляет собой гидростатическое давление.Для горизонтальной трубки тока (h1 =h2) выражение принимает вид где p+v2/2 называется полным давлением.Тогда уравнение Бернулли можно сформулировать так: при стационарном течении идеальной жидкости полное давление равное сумме статического, гидростатического и динамического давлений, остается величиной постоянной в любом поперечном сечении потока.

Статическое давление — это давление неподвижной жидкости. Статическое давление = уровень выше соответствующей точки измерения + начальное давление в расширительном баке.

Динамическое давление — это давление движущегося потока жидкости. Давление нагнетания насоса. Это давление на выходе центробежного насоса во время его работы.

 

62. Вязкость жидкости – силавнутреннего трения между двумя слоями жидкости, движущимися с различными скоростями, зависящая от природы жидкости и прямо пропорциональная площади соприкасающихся слоев и градиенту скорости между ними.

Ламинарный и турбулентный характер течения жидкости.

Течение имеет ламинарный характер при относительно невысокой скорости: слой молекул, приле­гающий к стенке трубы, прилипает к ней и остается неподвижным. Следующий слой молекул под действием силы давления и при противодействии силы внутреннего трения между слоями смещает­ся относительно пристеночного слоя и дви­жется по отношению к стенкам трубы с не­которой небольшой скоростью. Каждый последующий слой молекул, смещаясь отно­сительно предыдущего слоя, движется по отношению к стенке трубы с постепенно возрастающей скоростью, которая дости­гает наибольшего значения в центре трубы.

Ламинарное течение устанавливается в трубах с гладкими стенками, без резких изменений площади сечения или изгибов трубы, а так же при отсутствии множественных разветвлений. При нарушении этих условий и особенно при высоких скоростях течение переходит в турбулентное: скорости частиц жидкости при этом беспорядочно меняются, образуются местные завихрения - происходит перемешивание частиц жидкости.

 

63. Течение жидкости по горизонтальной трубе. Закон Пуазейля.

Пуазейль опытным путем уста­новил, что средняя скорость ламинарного течения жидкости по неширокой горизонтальной круглой трубе постоянного сечения пря­мо пропорциональна разности давлений при входе и выходе из трубы, квадрату радиуса R трубы и обратно пропорциональна дли­не l трубы и коэффициенту вязкости жидкости (закон Пуазейля);

В дальнейшем, используя рассмотренный выше закон распределения скоростей по сечению трубы, Гаген вывел эту формулу теоретически.

Средняя скорость течения жидкости определяет количество жид­кости Q, протекающее через поперечное сечение S трубы в единицу вре­мени: Следовательно,

Эту формулу и называют обычно формулой ГагенаПуазейля Ей можно придать и такой вид: , где

Величину называют гидравлическим сопротивлением. Оно обрат­но пропорционально четвертой степени радиуса и поэтому весьма зна­чительно возрастает с уменьшением радиуса трубы.

 

64. Определение скорости кровотока.

Ультразвуковой метод (ультразвуковая расходометрия) основан на эффекте Доплера, позволяет определять не только среднюю скорость кровотока, но и скорость движения различных слоев крови

Электромагнитный метод (электромагнитная расходометрия ) измерения скорости кровотока основан на отклонении движущихся зарядов в магнитном поле.

 

65. Физические основы реографии:

Биологические мембраны и, следовательно, весь организм обладают емкостными свойствами, в связи с этим импеданс тканей организма определяется только омическим и емкостным сопротив­лениями. Частотная зависимость импеданса позволяет оценить жизнеспо­собность тканей организма, что важно знать для пересадки (транс­плантации) тканей и органов. В мертвой ткани разруше­ны мембраны – «живые конденсаторы», и ткань обладает лишь омическим сопротивлением. Различие в частотных зависимостях импенданса получается и в случаях здоровой и больной ткани.

Импеданс тканей и органов зависит также и от их физиологиче­ского состояния. Так, при кровенаполнении сосудов импеданс изменяется в зависимости от состояния сердечно-сосудистой дея­тельности.

 

66. Гемодинам



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-07-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: