Признаки, характерные для родословной при аутосомно-рецессивном типе наследования




Вопросы для проверки уровня обученности ЗНАТЬ

1.Картирование генов

Генетическое картирование - это определение группы сцепления и положения картируемого гена относительно других генов данной хромосомы. Чем больше генов известно у данного вида, тем точнее результаты этой процедуры. Как правило, число генов в группах сцепления зависит от линейных размеров соответствующих хромосом. Однако, протяженные области конститутивного гетерохроматина (в районе центромеры и теломерных участков) практически не содержат генов и, таким образом, нарушают эту зависимость.

На первом этапе картирования определяют принадлежность гена к той или иной группе сцепления. Как известно, у D. melanogaster в диплоидном наборе четыре пары хромосом: первая пара — половые хромосомы (XX — у самок, XY — у самцов), вторая, третья и четвертая — аутосомы. Число генов в Y-хромосоме самцов очень мало. Для локализации вновь возникшей мутации необходимо располагать набором маркерных генов для каждой хромосомы. Картирование мутации основывается на анализе ее сцепления с этими маркерами. Например, если интересующая нас мутация наследуется независимо от маркеров второй хромосомы, делается вывод о ее принадлежности к другой группе сцепления. Скрещивания проводятся до тех пор, пока не удастся выявить сцепленное наследование анализируемой мутации с маркерными мутациями какой-либо хромосомы.

Второй этап картирования подразумевает определение положения гена на хромосоме. Для этого подсчитывают расстояние между этим геном и уже известными, маркерными генами. Для подсчета генетических расстояний проводят специальные скрещивания, в потомстве которых учитывают частоты кроссоверных и некроссоверных особей. Предполагается, что расстояние между двумя генами пропорционально частоте кроссинговера между ними. Следует иметь в виду, что, чем дальше расположены друг от друга гены, тем чаще между ними происходят множественные перекресты и тем больше искажается истинное расстояние между этими генами.

 

Частая рекомбинация между расположенными далеко друг от друга генами может привести к увеличению числа кроссоверных организмов в потомстве анализирующего скрещивания до 50%, имитируя независимое наследование изучаемых признаков. Поэтому при составлении карт расстояния между далеко расположенными генами следует использовать не непосредственный подсчет числа кроссоверных особей в анализирующих скрещиваниях, а сложение расстояний между многими близко расположенными друг от друга генами, находящимися внутри изучаемого протяженного участка. В этом случае сцепление между далеко расположенными генами можно установить по их сцепленному наследованию с промежуточно-расположенными генами, которые в свою очередь сцеплены между собой. В результате такого метода определения расстояний между генами длины карт хромосом могут превышать 50 морганид. Так, у дрозофилы генетическое расстояние между генами, лежащими в разных концах хромосомы 2, составляет 107 морганид.

2.Сравнение структурных особенностей про- и эукариотических генов.

Организация генома прокариот˸ Геном прокариот может состоять из одной или нескольких крупных молекул ДНК, называемых хромосомами, и небольших

молекул ДНК – плазмид. В хромосомах представлены практически всœе гены, необходимые для жизнедеятельности бактерии. Плазмиды же несут гены, необязательные для бактерии, без них клетка может обойтись, хотя в некоторых условиях они способствуют её выживанию.Хромосомы и плазмиды могут представлять собой как кольцевые, так и линœейные двухцепочечные молекулы ДНК. Геном бактерий может состоять из одной или нескольких хромосом и плазмид.Хромосома(ы) в бактериальной клетке представлена(ы) в виде одной копии, ᴛ.ᴇ. бактерии гаплоидны. Плазмиды же могут присутствовать в клетке как в виде одной копии, так и в нескольких.

Хромосома уложена в компактную структуру – нуклеоид, который имеет овальную или сходную с ней форму. Его структура поддерживается ДНК-связывающими гистоноподобными белками и молекулами РНК. С нуклеоидом также ассоциированы молекулы РНК-полимеразы и ДНК-топоизомеразыI. По периферии нуклеоидарасполагаются петли хромосомной ДНК, которые находятся в транскрипцио в активном состоянии. При подавлении транскрипции эти петли втягиваются внутрь. Нуклеоид не является стабильным образованием и во время различных фаз роста бактериальных клеток изменяет свою форму. Изменение ᴇᴦο пространствеой организациисопряжено с изменением транскрипционной активностью определœенных генов бактерий.

В состав хромосомы могут входить геномы умеренных фагов. Включение их геномов в клеточный может происходить после заражения фагами бактерий. При этом одни фаговые геномы интегрируют в строго определœенные участки хромосомы, другие – в участки различной локализации.

Размер геномов прокариот колеблется от нескольких сотен тысяч до десятка миллионов пар нуклетидов. Геномы прокариот отличаются друг от друга по содержание ГЦ-пар, их доля в их составе колеблется от 23 до 72 %. Нужно отметить, что в белках термофильных бактерий повышено также и содержание полярных аминокислот, что делает их более устойчивыми к денатурации при повышенных температурах. В составе белковхеликобактерий (обитающих вкислой среде) больше аминокислотных остатков аргинина и лизина. Остатки этих аминокислот способны связывать ионы водорода, тем самым, оказывая влияние на кислотность среды, и способствуя выживанию бактерий в сложных экологических условиях.О числе генов в геноме судят по наличию в их составе открытых рамок считывания (ОРС). ОРС представляет собой полинуклеотидную последовательность, потенциально способную кодировать полипептид. О существовании ОРС на тех или иных участках ДНК судят на основании расшифрованной первичной структуры ДНК. Основным критерием принадлежности участка полинуклеотидной цепи к ОРС служит отсутствие стоп-кодонов на достаточно протяженном участке после стартовогокодона. В тоже самое время наличие ОРС является недостаточным условием для утверждения о наличии на да ом участке ДНК гена. Гены, прокариот, как правило, имеют оперонную организацию. В одном опероне обычно представлены гены, ответственные за осуществление одного и того же метаболического процесса.

3.Организация и эволюция ядерного генома.

.1 Геном предполагаемого общего предка про- и эукариот

Общие принципы организации наследственного материала, представленного нуклеиновыми кислотами, а также принципы записи генетической информации у про- и эукариот свидетельствуют в пользу единства их происхождения от общего предка, у которого уже была решена проблема самовоспроизведения и записи информации на основе репликации ДНК и универсальности генетического кода. Однако геном такого предка сохранял большие эволюционные возможности, связанные с развитием надмолекулярной организации наследственного материала, разных путей реализации наследственной информации и регуляции этих процессов.

Многочисленные указания на различия в организации генома, деталях процессов экспрессии генов и механизмов ее регуляции у про- и эукариот свидетельствуют в пользу эволюции названных типов клеток по разным направлениям после их дивергенции от общего предка.

Существует предположение, что в процессе возникновения жизни на Земле первым шагом явилось образование самовоспроизводящихся молекул нуклеиновых кислот, не несущих первоначально функции кодирования аминокислот в белках. Благодаря способности к самовоспроизведению эти молекулы сохранялись во времени. Таким образом, первоначальный отбор шел на способность к самосохранению через самовоспроизведение. В соответствии с рассмотренным предположением позднее некоторые участки ДНК приобрели функцию кодирования, т.е. стали структурными генами, совокупность которых на определенном этапе эволюции составила первичный генотип. Экспрессия возникших кодирующих последовательностей ДНК привела к формированию первичного фенотипа, который оценивался естественным отбором на способность выживать в конкретной среде.

Важным моментом в рассматриваемой гипотезе является предположение о том, что существенным компонентом первых клеточных геномов была избыточная ДНК, способная реплицироваться, но не несущая функциональной нагрузки в отношении формирования фенотипа. Предполагают, что разные направления эволюции геномов про- и эукариот связаны с различной судьбой этой избыточной ДНК предкового генома, который должен был характеризоваться достаточно большим объемом. Вероятно, на ранних стадиях эволюции простейших клеточных форм у них еще не были в совершенстве отработаны главные механизмы потока информации (репликация, транскрипция, трансляция). Избыточность ДНК в этих условиях создавала возможность расширения объема кодирующих нуклеотидных последовательностей за счет некодирующих, обеспечивая возникновение многих вариантов решения проблемы формирования жизнеспособного фенотипа.

1.2 Эволюция прокариотического генома

По мере совершенствования и повышения надежности главных механизмов потока информации значение избыточной ДНК в повышении выживаемости организмов снижалась. В такой ситуаций одним из возможных направлений изменения генома было уменьшение его размеров за счет утраты некодирующих нуклеотидных последовательностей. Именно так можно представить эволюционный путь, пройденный геномом современных прокариот. Одновременно в качестве механизмов, поддерживающих выживаемость этих форм, в историческом развитии закреплялось свойственное им короткое время генерации, т.е. интенсивное размножение и быстрая смена поколений (кишечная палочка делится каждые 20 мин). Перечисленные особенности хорошо сочетаются с гаплоидностью прокариот, что приводит к воспроизведению в фенотипе любой мутации.

Экспрессия 95% ДНК, относительно малые размеры генома, гаплоидность, проявление в фенотипе практически каждой мутации в сочетании с коротким временем генерации обусловливают высокую приспособленность. Вместе с тем для прокариотического типа организации не свойственны обширные и разнообразные изменения структуры. Вследствие этого описанное направление эволюции, обеспечивая высокую способность к выживанию (прокариоты существуют на Земле около 3,5 млрд. лет), является тупиковым в плане прогрессивной эволюции живых существ. [1]

1.3 Эволюция эукариотического генома

В отличие от изменений прокариотического генома преобразования генома в эволюции эукариот связаны с нарастающим увеличением количества ДНК. Это увеличение наблюдается в процессе прогрессивной эволюции эукариот. На фоне такого увеличения большая часть ДНК является «молчащей», т.е. не кодирует аминокислот в белках или последовательностей нуклеотидов в рРНК и тРНК. Даже в пределах одного гена молчащие (интроны) и кодирующие (экзоны) участки могут перемежаться. В составе ДНК обнаруживаются высоко и умеренно повторяющиеся последовательности. Вся масса ДНК распределена между определенным числом специализированных структур — хромосом. Хромосомы в отличие от нуклеоида прокариот имеют сложную химическую организацию. Эукариоты в большинстве случаев диплоидны. Время генерации у них значительно больше, чем у прокариот. Отмечаемые особенности, оформившиеся в ходе эволюции генома эукариот, допускают широкие структурные изменения и обеспечивают не только адаптивную (приспособительную), но и прогрессивную эволюцию.

4.Международная научная программа «Геном человека».

Вариант 1) Проект Человеческий Геном — международный научно-исследовательский проект, главной целью которого было определить последовательность нуклеотидов, которые составляют ДНК, и идентифицировать 20—25 тыс. генов в человеческом геноме. Этот проект называют крупнейшим международным сотрудничеством когда-либо проводившимся в биологии.

 

(Вариант 2) Основная программа химических процессов, происходящих в любом организме (в том числе организме человека), записана в последовательности пар оснований молекулы ДНК. В некотором смысле, если вы узнаете последовательность пар оснований, то она расскажет вам все о химических реакциях и наследственной информации данного вида. В 1986 году группа ученых в США начала работу над проектом, позднее названным «Геном человека». Цель этого проекта заключалась в том, чтобы представить в виде карты полную последовательность (геном) ДНК человека.

 

5.ДНК-диагностика наследственных и инфекционных заболеваний.

К методам, широко используемым при изучении генетики человека, относятся генеалогический, популяционно-статистический, близнецовый, метод дерматоглифики, цитогенетический, биохимический, методы генетики соматических клеток.Генеалогический метод - составление и анализ родословных. Обычно это или больной, или носитель определенного признака, наследование которого необходимо изучить.

С помощью метода установляется наследственная обусловленность изучаемого признака, тип его наследования. При анализе родословных по нескольким признакам выявляется сцепленный характер их наследования, что используют при составлении хромосомных карт. Метод позволяет изучать интенсивность мутационного процесса, оценить экспрессивность и пенетрантность аллеля. Используется в медико-генетическом консультировании для прогнозирования потомства. Генеалогический анализ существенно осложняется при малодетности семей.

Близнецовый метод. Этот метод заключается в изучении закономерностей наследования признаков в парах одно- и двуяйцевых близнецов.

ДНК диагностика-это комплекс методов молекулярного анализа ДНК.

Методы ДНК диагностики позволять выявить: ДНК любого организма (человека, бактерий, простейшие или вирусы). Возможно диагностики паразитарной болезни.

Существуют различные методы ДНК диагностики.

Существуют различные виды анализа ДНК.

Метод ПЦР(Полимеразная цепная реакция)- количественное увеличение необходимого участка ДНК, путем синтеза invite большого числа копий.

Этапы ПЦР:

· Выделение ДНК

· Рестрикция ДНк

· Амплификация ДНК

· Электрофорез

Применение ПЦР

· Анализ древних остатков

· Установка родства

· DS-ка инфекционные заболевание.

Рестрикционный анализ-это метод анализа, двухцепного фрагмента ДНК, которые образуются после обработки ферментами - рестриктаза.

Этапы:

· Выделение ДНК

· Рестрикция ДНК

· Электрофорез

Применение

· Анализ

· ДНК диагностика связаны с мутацией в сайтах рестрикций

· Идентификация ДНК различных организмов

6.Геномная дактилоскопия и ее использование в популяционные исследования.

Генети́ческая дактилоскопи́я или ДНК-дактилоскопия— система научных методов биологической идентификации индивидуумов (организмов) на основе уникальности последовательности чередования нуклеотидовв цепочке ДНК каждого живого существа (за исключениемоднояйцевых близнецов), своеобразного «генетического отпечатка», остающегося индивидуальным и неизменным на протяжении всей жизни индивидуума (организма).

Изменчивость числа повторяющихся последовательностей ДНК человека служит основой для метода «отпечатков пальцев». Этот метод сегодня приме­няется в самых разных целях, от установления отцовства и нужд судебной медицины до выявления контрафактных мясных продуктов, в том числе китобойного промысла.

Применение VNTR(переменное число тандемных повторов)-анализа в криминалистике. С 1988 г. в США результаты изучения ДНК с помощью метода «отпечатков пальцев» принимаются в качестве улик в криминалистике. Метод используется также для мно­гих других целей, в том числе, для идентификации личности при иммиграции, под­тверждения чистопородности собак, установления отцовства и исследований, связан­ных с охраной редких видов. Стандартное криминалистическое тестирование включает определение около десяти VNTR-локусов, которые находятся в разных хромосомах.

7. Методы и перспективы генной терапии.

Генотерапия — совокупность генноинженерных (биотехнологических) и медицинских методов, направленных на внесение изменений в генетический аппарат соматических клеток человека в целях лечения заболеваний. Это новая и бурно развивающаяся область, ориентированная на исправление дефектов, вызванных мутациями (изменениями) в структуре ДНК, или придания клеткам новых функций.

Концепция генотерапии, появилась сразу после открытия явления трансформации у бактерийи изучения механизмов трансформации клеток животных опухолеобразующимивирусами. Такие вирусы могут осуществлять стабильное внедрение генетического материала вгеномклетки хозяина, поэтому было предложено использовать их в качествевекторовдля доставки желаемой генетической информации в геном клеток. Предполагалось, что такие векторы могут в случае необходимости поправлять дефекты генома.

Реальностью генная коррекция соматических клеток стала после 1980-х годов, когда были разработаны методы получения изолированных генов, созданы эукариотические экспрессирующие векторы, стали обычными переносы генов у мышей и других животных.

Исторически генная терапия нацеливалась на лечение наследственных генетических заболеваний, однако поле её применения, по крайней мере теоретически, расширилось. В настоящее время генную терапию рассматривают как потенциально универсальный подход к лечению широкого спектра заболеваний, начиная от наследственных, генетических и заканчивая инфекционными.

К генно-терапевтическим подходам теперь относят также и такие подходы, когда клетки модифицируют, чтобы усилить иммунный ответорганизма на нежелательные явления, вызванные инфекцией или возникновением опухолей. Модификация также осуществляется введением новой генетической информации либо в клетки, против которых хотят увеличить иммунный ответ, либо в клетки иммунной системы, с помощью которых хотят усилить этот эффект. Хотя строго говоря эта стратегия не совсем вписывается в классическое понятие генной терапии.

Главной проблемой является преодоление барьеров для проникновения терапевтического агента в опухоль с минимальной токсичностью для здоровых клеток. Модели дают очень обещающие результаты, однако даже с лучшими животными моделями остается проблема перехода к человеку, который отличается и биохимически и физиологически от модели.

8.Кланирование животных: теория и практика.

9.Трансгенные сельскохозяйственные животные и рыбы: теория и практика.

10.Получения гормона роста и инсулина методами генной- инженерии.

Синтез соматотропина (гормона роста)

Соматотропин секретируется передней долей гипофиза. Впервые он был выделен (и очищен) в 1963 г из гипофиза. Его недостаток приводит к заболеванию – гипофизарной карликовости (1 случай на 5000 человек). Гормон обладает видовой специфичностью. Обычно его получают из гипофиза забитых на мясокомбинате животных, но в недостаточном количестве. Гормона хватает лишь для лечения 1/3 случаев гипофизарной карликовости и лишь в развитых странах. Основные производители – Швеция, Италия, Швейцария и США. Молекула ГР человека состоит из 191 аминокислотного остатка.

Принимая во внимание это обстоятельство, в настоящее время ГР синтезируют методами гинетической инженерии в специально сконструированных клетках бактерий. Будучи синтезированным в клетках E. Coli, ГР содержит дополнительный остаток метионина на H2N-конце молекулы. Биосинтез гормона роста из 191 аминокислотного остатка был впервые осуществлён в 1979 году Д. Гедделем с сотрудниками. Сначала клонировали двунитевую кДНК; далее путём расщепления получали последовательность, кодирующую аминокислотный порядок гормона, за исключением первых 23 аминокислот и синтетический полинуклеотид, соответствующий аминокислотам от первой до двадцать третьей, со стартовым ATG-кодоном в начале. Затем два фрагмента объединяли и подстраивали к паре lac-промоторов и участку связывания рибосом. Конечный выход гормона составил 2,4 мкг на 1 мл культуры, что составляет 1000 000 молекул гормона на клетку.

Полученный гормон на конце полипептидной цепи содержал дополнительный остаток метионина и обладал значительной биологической активностью. С 1984 г после многолетних клинических испытаний на токсичность компанией «Генетек» (Сан-Франциско) было начато широкомасштабное производство бактериального соматотропина.

ГР в клетках E. Coli и в культуре клеток животных был получен в 1984 году одновременно в институте Пастера (Париж) и в Институте молекулярной биологии (Москва). Оказалось, что в бактериальных клетках возможен синтез аналогов ГР, с помощью которых изучались участки молекулы, важные для стимулирования роста и процесса неоглюкогенеза на молекулярном уровне.

 

Получение инсулина.

Инсулин – гормон поджелудочной железы, регулирующий углеводный обмен и поддерживающий нормальный уровень сахара в крови. Недостаток этого гормона в организме приводит к одному из тяжелейших заболеваний – сахарному диабету, который как причина смерти стоит на третьем месте после сердечно-сосудистых заболеваний и рака. Инсулин – небольшой глобулярный белок, содержащий 51 аминокислотный остаток и состоящий из двух полипептидных цепей, связанных между собой двумя дисульфидными мостиками. Синтезируется он в виде одноцепочного предшественника – проинсулина, содержащего концевой сигнальный пептид (23 аминокислотных остатка) и 35-звенный соединительный пептид (С-пептид). При удалении сигнального пептида в клетке образуется проинсулин из 86 аминокислотных остатков, в котором А и В-цепи инсулина соединены С-пептидом, обеспечивающим им необходимую ориентацию при замыкании дисульфидных связей. После протеолитического отщепления С-пептида образуется инсулин.

Известно несколько форм сахарного диабета. Самая тяжёлая форма, для лечения которой больному необходим инсулин (инсулинзависимая форма заболевания), вызвана избирательной гибелью клеток, синтезирующих этот гормон (клетки островков Лангерганса в поджелудочной железе). Форма сахарного диабета, для лечения которой инсулин не требуется, распространена чаще, с ней удаётся справляться с помощью соответствующих диет и режима.

Обычно поджелудочная железа крупного рогатого скота и свиней не используется в мясной и консервной промышленности и поставляется в вагонах-рефрижераторах на фармацевтические предприятия, где проводят экстракцию гормона. Для получения 100 г кристаллического инсулина необходимо 800-1000 г исходного сырья.

Синтез обеих цепей и соединение их дисульфидными связями для получения инсулина были проведены в 1963 и 1965 гг тремя коллективами исследователей в США, Китае и Германии. В 1980 г датская компания «Ново индастри» разработала метод превращения инсулина свиньи в инсулин человека путём замещения 30-го остатка аланина в цепи В на остаток треонина. Оба инсулина не различались по активности и длительности действия.

Работы по генно-инженерному получению инсулина начались около 30 лет назад. В 1978 году появилось сообщение о получении штамма кишечной палочки, продуцирующего крысиный проинсулин (США). В этом же году были синтезированы отдельные цепи человеческого инсулина посредством экспрессии их синтетических генов в клетках E. Coli (рис. 8.21):

1.Каждый из полученных синтетических генов подстраивался к 3'-концу гена фермента в-галактозидазы и вводился в векторную плазмиду - pBR322 (1).

2. Клетки E. Coli, трансформированные такими рекомбинантными плазмидами, производили гибридные (химерные) белки, состоящие из фрагмента в-галактозидазы и А и В пептида инсулина, присоединённого к ней через остаток метионина (2).

3. После обработки химерного белка бромцианом и протеолитического отщепления С-пептида образуется инсулин.

11. Виды мутации ДНК и их причины.

 

Мутации – это изменения в ДНК клетки. Возникают под действием ультрафиолета, радиации (рентгеновских лучей) и т.п. Передаются по наследству, служат материалом для естественного отбора. отличия от модификаций

Генные мутации – изменение строения одного гена. Это изменение в последовательности нуклеотидов: выпадение, вставка, замена и т.п. Например, замена А на Т. Причины – нарушения при удвоении (репликации) ДНК. Примеры: серповидноклеточная анемия, фенилкетонурия.

Хромосомные мутации – изменение строения хромосом: выпадение участка, удвоение участка, поворот участка на 180 градусов, перенос участка на другую (негомологичную) хромосому и т.п. Причины – нарушения при кроссинговере. Пример: синдром кошачьего крика.

Геномные мутации – изменение количества хромосом. Причины – нарушения при расхождении хромосом.

  • Полиплоидия – кратные изменения (в несколько раз, например, 12 → 24). У животных не встречается, у растений приводит к увеличению размера.
  • Анеуплоидия – изменения на одну-две хромосомы. Например, одна лишняя двадцать первая хромосома приводит к синдрому Дауна (при этом общее количество хромосом – 47).

Цитоплазматические мутации – изменения в ДНК митохондрий и пластид. Передаются только по женской линии, т.к. митохондрии и пластиды из сперматозоидов в зиготу не попадают. Пример у растений – пестролистность.

Соматические – мутации в соматических клетках (клетках тела; могут быть четырех вышеназванных видов). При половом размножении по наследству не передаются. Передаются при вегетативном размножении у растений, при почковании и фрагментации у кишечнополостных (у гидры).

 

12.Регуляция транскрипции у эукариота.

Общие принципы:

1.если у прокариот возможен синтез полицистронных мРНК, то у эукариот своеобразным функциональным аналогом полицистронной мРНК является сплайсинг мРНК.

2.наличие дистантной регуляции активности промотора с помощью элементов удаленных от него (на 100000 п.о.), т.н. upstream elements.

В регуляторной области эукариотических генов выявляется два типа цис-регуляторных элементов: общие и специфические.

Общие регуляторные элементы:

ТАТА-бокс: TATA G/T A A/T. АТ-богатая последовательность расположенная за 30 п.н. до старта транскрипции. Существуют промоторы, лишенные ТАТА-бокса.

INR-консенсус: YYAN T/AYY (Y-любой пиримидин). Находится в районе старта транскрипции.

CCAAT-элемент. Занимает положения –50 или –90.

 

Специфические регуляторные элементы.

По своему действию на активность промоторов могут быть разделены на два типа:

1. энхансеры – элементы, повышающие эффективность работы промотора;

2. сайленсеры – элементы, угнетающие работу промотора.

Специфические регуляторные элементы могут находится на значительном расстоянии от промотора и их функционирование не зависит от ориентации. В структурном отношении могут представлять собой набор повторяющихся мотивов.

В последнее время интенсивно изучается еще один тип специфических регуляторных элементов, называемых инсуляторами. Эти элементы не имеют консенсусных участков, каждый инсулятор уникален по своей последовательности. В настоящее время преобладает мнение о том, что два инсулятора структурно и функционально ограничивают группу генов, активность которых регулируется независимо от других групп генов.

 

С регуляторными элементами ДНК взаимодействуют белковые транс-факторы, которые, как и регуляторные элементы, можно подразделить на общие и специфические.

1.Общие транскрипционные факторы. Узнают общие регуляторные цис-элементы и участвуют в регуляции транскрипции большинства генов. Общие факторы образуют белковый комплекс, который обеспечивает связывание ДНК-зависимой РНК полимеразы с промотором нужного гена в нужное время, точное позиционирование активного центра фермента относительно первого транскрибируемого нуклеотида и активацию фермента. Поскольку эукариоты обладают тремя разными РНК-полимеразами, то в функционировании каждой из них участвуют отличающиеся наборы общих транскрипционных факторов, которые не могут быть заменены друг другом. Примерами общих факторов являются белковые комплексы, известные как TFIIB, TFIID, TFIIE, TFIIF и т.д.

2.Специфические транскрипционные факторы. Узнают специфические регуляторные цис-элементы и контролируют транскрипцию отдельных генов или их небольших групп. Специфические факторы связывают внешние стимулы, воспринимаемые клеткой, с ответом клетки на уровне экспрессии генов. В ряде случаев они привлекают к промоторной области гена белковые комплексы (адапторные, коактиваторные), которые подготавливают ДНК-матрицу к процессу транскрипции ослабляя гистон-ДНК контакты, и, тем самым, облегчая взаимодействие с ней общих факторов транскрипции. В других случаях специфические факторы могут взаимодействовать с общими транскрипционными факторами, тем самым, привлекая их к областям активной транскрипции.

Распространенной моделью, объясняющей дистантное действие энхансеров и инсуляторов, является модель петли.

 

 

 
 

 

 

Петля ДНК формируется за счет белок-белковых взаимодействий между факторами, связанными с дистантными регуляторными элементами и белковым комплексом, локализующимся в районе промотора.

Обнаружены также белки, связывающиеся с последовательностями инсуляторов, у части из них известна структура, но о механизмах их действия в настоящее время известно мало. Известны инсуляторы, находящиеся внутри транспозонов (например, gypsy), однако об инсуляторах у вирусов пока ничего не известно.

Аттенуация транскрипции в эукариотических клетках. Она происходит на ранней стадии репродукции вируса. В мРНК, образующейся при транскрипции поздних генов, имеется элемент, вызывающий преждевременную терминацию транскрипции. Благодаря этому элементу невозможна транскрипция поздних генов на ранних стадиях. На поздних стадиях действуют какие-то белки, предотвращающие аттенуацию.

Посттранскрипционная регуляция экспрессии генов.

Имеется в виду пять процессов.

1.Кэпировние.

2.Полиадениилирование.

3.Сплайсинг.

4.Транспорт из ядра.

5.Стабльность РНК в цитоплазме.

Полиаденилирование.

Сигнал в 3’-области мРНК: AAUAAA. Полиаденилирование происходит на расстоянии нескольких десятков нуклеотидов от сигнала. Дополнительные сигналы GU или U богатые элементы, которые могут находиться и до и после основного сигнала.

Предполагается, что основной сигнал находится в петле, на которой происходит образование нуклеопротеидного комплекса.

Транс-факторы: CPSF – Cleaveage and Polyadenilation specificity factor. Он вносит разрыв в мРНК после основного сигнала полиаденилирования, другой фактор CStF – Cleaveage stimulation specificity factor. Есть еще поли-А-полимераза и поли-А-связывающий белок. Факторы полиаденлирования взаимодействуют с РНК-полимеразой и системой сплайсинга.

Сплайсинг.

Существует несколько видов сплайсинга: обычный сплайсинг, самосплайсинг, транссплайсинг. Описаны случаи транссплайсинга между аденовирусной и клеточной мРНК.

Альтернативный сплайсинг позволяет увеличить разнообразие белков с малого количества генов. В зависимости от длины тела мРНК может по-разному происходить альтернативный сплайсинг.

SV40 и аденовирусы – почти все, у герпес-вируса только часть мРНК сплайсированы.

У SV40 альтернативный сплайсинг определяет выбор точки инициации трансляции. У аденовирусов альтернативный сплайсинг определяет выбор точки терминации трансляции.

В общем виде речь идет о взаимодействии вирусных белков с клеточной системой сплайсинга, позволяющей регулировать его во времени.

Экспорт мРНК из ядра.

В клетке используется система экспортинов. Проблема в транспорте несплайсированных форм мРНК. Сплайсированные формы экспортируются с участием белков сплайсинга. Экспорт регулируется во времени.

13.Механизмы репарации ДНК.

Два типа нарушений структуры ДНК приводят к мутациям. Это, во-первых, включение нормальных нуклеотидов в аномальное окружение из последовательностей нуклеотидов, приводящих к образованию неправильно спаренных оснований и петель разных размеров. Во-вторых, появление повреждений ДНК в виде аномальных нуклеотидов в правильных последовательностях ДНК. В этом случае речь идет о различных химических модификациях нуклеотидов, включая их разрушение и образование поперечных сшивок. Повреждения ДНК могут приводить к задержке и блокированию репликации и транскрипции.

При исследовании механизмов репарации ДНК важные результаты были получены на клетках, облученных УФ-светом с длинами волн 240-280 нм. УФ-облучение клеток часто сопровождается их гибелью, образованием мутаций и злокачественной трансформацией. Среди первичных повреждений наиболее часто встречаются биспиримидиновые фотопродукты: пиримидиновые димеры циклобутанового типа, соединенные связью 6-4. Как про-, так и эукариоты имеют несколько ферментных систем, которые разделяют пиримидиновые димеры или восстанавливают исходную структуру азотистых оснований. К таким репаративным системам относится, прежде всего, система эксцизионной репарации ДНК (NER), осуществляющая вырезание поврежденных нуклеотидов или азотистых оснований. Система ферментативной фотореактивации ДНК, основным компонентом которой является ДНК- фотолиаза, разделяет пиримидиновые димеры, превращая их в нормальные пиримидиновые основания. Кроме того, поврежденные УФ- светом молекулы ДНК могут репарироваться с участием систем рекомбинации и в процессе пострепликативного синтеза ДНК. Действие систем репарации поврежденной ДНК распространяется не только на фотопродукты, но и на другие модифицированные основания, образующиеся под действием химических мутагенов. Отдельно следует упомянуть систему, распознающую неправильно спаренные основания в двойной спирали ДНК, возникающие в результате ошибок репликации.

Большинство исследованных организмов обладают системами репарации ДНК в различных комбинациях. Так, клетки E. coli для удаления фотопродуктов используют системы NER и PHR, тогда как у человека пиримидиновые димеры циклобутанового типа удаляются исключительно системой NER.

14.Малекулярные механизмы генетической рекомбинации.

Изучение генетического материала на молекулярном уровне привело к выводу, что рекомбинация сцепленных генов представляет собой взаимодействие между гомологичными молекулами ДНК, конечным результатом которого является формирование структуры, построенной из частей каждого родительского гомолога. Представления о молекулярных механизмах генетической рекомбинации отражены в моделях «копирующего выбора» (copying-choise) и «разрыва - воссоединения» (breake-reunion).

Модель «копирующего выбора» была сформулирована еще в 1931 г. и в первоначальном варианте сводилась к допущению связи между репликацией и рекомбинацией генов. В последующем на основе этой модели стали считать, что рекомбинантные молекулы ДНК не содержат нуклеотидов, происходящих от ДНК родителей, они формируются заново, причем таким образом, что после спаривания гомологичных хромосом в качестве шаблона вначале используется ДНК одного

родителя, а затем - ДНК другого. Следовательно, после репликации рекомбинантные цепи ДНК представляют собой, по существу, реплики определенного района одной родительской цепи и реплики определенного района другой родительской цепи ДНК.

 

Модель «разрыв - воссоединение» окончательно была сформулирована почти тогда же, но ее содержание определилось благодаря данным о месте и времени осуществления кроссинговера, т. е. о поведении гомологичных хромосом при мейозе. В соответствии с э



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-07-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: