Фотоны. Формула Эйнштейна




Фотон – квант электромагнитного излучения. Скорость движения фотона совпадает со скоростью света, масса покоя m=0.

Энергия и импульс: , k – волновой вектор.

Формула Эйнштейна: энергия электрона, поглотившего квант света, не испытавшего случайных соударений в веществе, идёт на работу выхода и кинетическую энергию: E = ℏw = h , при этом

Предположение о корпускулярной природе света полностью объясняет фотоэффект.

 

Эффект Комптона.

Эффект Комптона подтвердил предположение о корпускулярном характере света: при рассеянии рентгеновских лучей, длина волны которых , наряду с лучами длины волны , появляются лучи длины зависит только от . Выражение для этой зависимости получим, если предположим, что рентгеновские лучи представляют собой поток фотонов, который упруго рассеивается на практически свободные электроны, также выполняются законы сохранения импульса и энергии:

Получаем: = ; исходя из этого выразим длину волны Комптона: = . Окончательно получаем: При рассеянии фотона на атоме получаем, что . Т.о. эффект Комптона указывает на то, что свет – это поток частиц, с другой стороны, явления интерференции и дифракции говорят о том, что свет – это волна.

 

Гипотеза де Бройля. Необычные свойства микрочастиц.

Де Бройль предположил, что все микрочастицы на ряду с корпускулярными свойствами обладают волновыми свойствами. Любая волна характеризуется частотой () и длиной (w). Де Бройль обобщил соотношения для энергии и импульса фотона и предположил, что любой частице соответствует: w= E / и . Эти предположения позволяют интерпретировать условия квантования Бора как условия того, что на стационарную орбиту ложится целое число длин волн (), то есть, образуется стоячая волна.

Для любой микрочастицы присущи как корпускулярные, так и волновые свойства. Представить такой объект наглядно невозможно, в отличии от волны, микрочастицы нельзя разделить на меньшие объекты. В отличии от классической частицы, микрочастица не движется по определённой траектории, ей невозможно приписать одновременно те или иные координаты и импульсы.

 

Уравнение Шредингера (УШ).

Развивая идеи де Бройля, Шредингер сопоставил им движущуюся комплекснозначную функцию координат от времени - волновую или пси-функцию, которая полностью характеризует состояние микрочастицы и содержит всю информацию о её движении.

УШ –основное уравнение квантовой механики, оно не выводится, а постулируется. Справедливость УШ доказывается тем, что выводы, следующие из него, согласуются с экспериментальными данными. УШ: .

Когда состояние частицы можно считать независимым от времени, для её описания можно воспользоваться стационарным УШ: .

 

Принцип суперпозиции.

Уравнение Шрёдингера (УШ). Если система может находиться в состояниях, описывающих , то она может находиться и в состоянии описываемой . Предположим, что собственная функция с собственными значениями энергии , . Тогда описывает некоторое физическое состояние, в котором при измерении энергии мы можем получить c вероятностью ; -комплексно сопряженное. В следствии того, что результаты, получаемые в рамках квантовой механики носит вероятностный характер, то мы можем говорить только о средних значениях физических величин и о их вероятности измерения определённого значения величины. В данном примере, среднее значение энергии: .

В самой простой формулировке принцип суперпозиции гласит: результат воздействия на частицу нескольких внешних сил есть векторная сумма воздействия этих сил.

Пси-функция не имеет прямого физического смысла, так как является комплексной величиной. Смысл пси-функции сформулировал Макс Борн: квадрат модуля волновой функции даёт плотность вероятности нахождения частицы в некоторой точке с координатами (x,y,z): ; где P – вероятность, V – объём.

Волновая функция должна соответствовать условиям: непрерывности, однозначности, конечности, её производные должны быть непрерывны, она должна быть интегрируема.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: