Ионотропные мембранные рецепторы




Трансмембранный транспорт

Общие понятия о рецепторе и лиганде

Клеточный рецептор — молекула (обычно белок или гликопротеид - соединение белка и углевода) на поверхности клетки, ядра, клеточных органелл или растворенная в цитоплазме. Клеточный рецептор специфично реагирует изменением своей пространственной конфигурации (формы) на присоединение к ней молекулы определенного химического вещества – лигáнда, передающего внешний регуляторный сигнал. Это в свою очередь, передает этот сигнал внутрь клетки или клеточной органеллы. Место на рецепторе, куда присоединяется лигáнд, называется сайт. У одного и того же рецептора может быть несколько сайтов. Клеточные рецепторы можно разделить на два основных класса — мембранные рецепторы (расположены на мембране отделяющей клетку от внешней среды) и внутриклеточные рецепторы.

Вещество, специфически соединяющееся с рецептором, называется лигандом (мессенджером) этого рецептора. Т.о., лиганд (синоним: мессенджер) – это химическое вещество, способное взаимодействовать с рецептором. Результат этого взаимодействия может быть различным. Если лиганд (мессенджер) приводит к изменению формы рецептора и его активации его называет агонистом. Если лиганд (мессенджер) изменяют форму (конформацию) рецептора и блокируют этот рецептор его называют антагонистом. Вещество, не меняющее состояния рецептора при связывании и лишь пассивно препятствующее связыванию лиганда с рецептором, называется конкурентным антагонистом, или блокатором рецептора.

Когда речь идет об органах чувств, лигандами (мессенджерами) являются вещества, воздействующие на рецепторы обоняния или вкуса. Кроме того, зрительные рецепторы реагируют на свет, а в органах слуха и осязания рецепторы чувствительны к механическим воздействиям (давлению или растяжению), вызываемым колебаниями воздуха и иными раздражителями. Существуют также термочувствительные белки-рецепторы и белки-рецепторы, реагирующие на изменение мембранного потенциала.

В зависимости от полярных свойств лигандов (мессенджеров), они подразделяются на две группы:

· полярные или гидрофильные сигнальные молекулы – белки, пептиды, производные аминокислот (кроме тиреоидных гормонов), они не растворяются в жирах и потому не могут пройти сквозь мембрану, имеют рецепторы на поверхности клетки;

· неполярные или гидрофобные сигнальные молекулы – стероиды, производные жирных кислот, тиреоидные гормоны, они жирорастворимы, легко проникают сквозь мембрану и их рецепторы расположены в цитоплазме.

Данное разделение первичных лигандов (мессенджером) имеет принципиальное значение и связано в первую очередь с механизмами их действия на клетку-мишень.

Рецепторы для водорастворимых лигандов (мессенджеров) - белковые гормоны, адреналин, норадреналин - расположены на поверхности мембраны (мембранные рецепторы), это обусловлено тем, что гидрофильные лиганды не могут пройти через гидрофобную поверхность мембраны. Жирорастворимые лиганды (мессенджеры) легко проходят через фосфолипидный бислой мембраны клетки и ядра, а потому рецепторы (внутриклеточные рецепторы) клетка к ним располагает внутри: на органеллах, ядре. Примеры жирорастворимых лигандов могут быть стероидные гормоны надпочечников, половых желез.

Ко всему прочему лиганды можно разделить на экзогенные (поступающие извне) и эндогенные (образуются внутри организма). Как правило, если какое-то экзогенное вещество имеет рецепторы на клетках, то в организме есть и эндогенные лиганды для данного рецептора. Так, например, эндогенными лигандом каннабиноидных рецепторов, с которыми связываются алкалоиды конопли, является вещество анандамид, производимое организмом из арахидоновой жирной кислоты. Т.е., рецептор один (каннабиноидный рецептор), а лиганды разные: эндогенный – анандамид, а экзогенный – алкалоид конопли. Или эндорфиновые рецепторы (играют важную роль в формировании боли и эмоционального состояния): могут соединяться с эндогенными лигандами - эндорфины, а могут связываться с наркотиками группы морфина.

Пассивный транспорт

Пассивный перенос веществ через клеточные мембраны не тре­бует затраты энергии метаболизма. Активный транспорт осуществля­ется транспортными аденозинтрифосфатазами (АТФазами) и проис­ходит за счет энергии гидролиза АТФ.

Схематически основные виды транспорта веществ через мембрану клеток представлены на рис.

Виды пассивного и активного транспорта веществ через мембрану.
1,2 — простая диффузия через бислой и ионный канал, 3 — облегченная диффузия, 4 — первично-активный транспорт, 5 — вторично-активный транспорт.

Простая диффузия

Диффузия представляет собой процесс, при помощи которого газ или растворенные вещества распространяются и заполняют весь доступный объем.

Молекулы и ионы, растворенные в жидкости, находятся в хаоти­ческом движении, сталкиваясь друг с другом, молекулами раствори­теля и клеточной мембраной. Столкновение молекулы или иона с мембраной может иметь двоякий исход: молекула либо «отскочит» от мембраны, либо пройдет через нее. Когда вероятность последнего события высока, то говорят, что мембрана проницаема для данного вещества.

Если концентрация вещества по обе стороны мембраны различна, возникает поток частиц, направленный из более концентрированно­го раствора в разбавленный. Диффузия происходит до тех пор, пока концентрация вещества по обе стороны мембраны не выравнивается. Через клеточную мембрану проходят как хорошо растворимые в воде {гидрофильные) вещества, так и гидрофобные, плохо или совсем в ней нерастворимые.

Гидрофобные, хорошо растворимые в жирах вещества, диффунди­руют благодаря растворению в липидах мембраны. Вода и вещества хорошо в ней растворимые проникают через временные дефекты углеводородной области мембраны, т.н. кинки, а также через поры, постоянно существующие гидрофильные участки мембраны.

В случае, когда клеточная мембрана непроницаема или плохо про­ницаема для растворенного вещества, но проницаема для воды, она подвергается действию осмотических сил. При более низкой кон­центрации вещества в клетке, чем в окружающей среде, клетка сжи­мается; если концентрация растворенного вещества в клетке выше, вода устремляется внутрь клетки.

 

Осмос

Осмос — движение молекул воды (растворителя) через мембрану из области меньшей в область большей концентрации растворенного вещества. Осмотическим давлением называется то наименьшее дав­ление, которое необходимо приложить к раствору для того, чтобы предотвратить перетекание растворителя через мембрану в раствор с большей концентрацией вещества.

Молекулы растворителя, как и молекулы любого другого вещества, приводятся в движение силой, возникающей вследствие разности химических потенциалов. Когда какое-либо вещество растворяется, химический потенциал растворителя уменьшается. Поэтому в облас­ти, где концентрация растворенного вещества выше, химический по­тенциал растворителя ниже. Таким образом, молекулы растворителя, перемещаясь из раствора с меньшей в раствор с большей концент­рацией, движутся в термодинамическом смысле «вниз», «по гради­енту».

Объем клеток в значительной степени регулируется количеством содержащейся в них воды. Клетка никогда не находится в состо­янии полного равновесия с окружающей средой. Непрерывное дви­жение молекул и ионов через плазматическую мембрану изменяет концентрацию веществ в клетке и, соответственно, осмотическое давление ее содержимого. Если клетка секретирует какое-либо ве­щество, то для поддержания неизменной величины осмотического давления она должна либо выделять соответствующее количество воды, либо поглощать эквивалентное количество иного вещества. Поскольку среда, окружающая большинство клеток гипотонична, для клеток важно предотвратить поступление в них больших количеств воды. Поддержание же постоянства объема даже в изотонической среде требует расхода энергии, поэтому в клетке концентрация ве­ществ неспособных к диффузии (белков, нуклеиновых кислот и т.д.) выше, чем в околоклеточной среде. Кроме того, в клетке постоянно накапливаются метаболиты, что нарушает осмотическое равновесие. Необходимость расходования энергии для поддержания постоянства объема легко доказывается в экспериментах с охлаждением или ингибиторами метаболизма. В таких условиях клетки быстро набу­хают. Для решения «осмотической проблемы» клетки используют два способа: они откачивают в интерстиций компоненты своего содер­жимого или поступающую в них воду. В большинстве случаев клет­ки используют первую возможность — откачку веществ, чаше ионов, используя для этого натриевый насос.

В целом объем клеток, не имеющих жестких стенок, определяется тремя факторами:

а) количеством содержащихся в них и неспособ­ных к проникновению через мембрану веществ;

б) концентрацией в интерстиций соединений, способных проходить через мембрану;

в) соотношением скоростей проникновения и откачки веществ из клетки.

Большую роль в регуляции водного баланса между клеткой и окружающей средой играет эластичность плазматической мембраны, создающей гидростатическое давление, препятствующее поступлению воды в клетку. При наличии разности гидростатических давлений в двух областях среды вода может фильтроваться через поры барьера, разделяющего эти области.

Диффузия ионов

Диффузия ионов происходит, в основном, через специализированные белковые структуры мембраны — ионные ка­налы, когда они находятся в открытом состоянии. В зависимости от вида ткани клетки могут иметь различный набор ионных каналов. Различают натриевые, калиевые, кальциевые, натрий-кальциевые и хлорные каналы. Перенос ионов по каналам имеет ряд особеннос­тей, отличающих его от простой диффузии. В наибольшей степени это касается кальциевых каналов.

Ионные каналы могут находиться в открытом, закрытом и инактивированном состояниях. Переход канала из одного состояния в другое управляется или изменением электрической разности потен­циалов на мембране, или взаимодействием физиологически активных веществ с рецепторами. Соответственно, ионные каналы подразде­ляют на потенциал-зависимые и рецептор-управляемые. Избирательная проницаемость ионного канала для конкретного иона опре­деляется наличием специальных селективных фильтров в его устье.

 

 

Ионотропные мембранные рецепторы

Ионотропные рецепторы представляют собой мембранные каналы, открываемые или закрываемые при связывании с лигандом. Важно, что через эти каналы проходят ионы, что тут же находит отражение на мембранном потенциале. Одним из наиболее полно изученных ионотропных рецепторов является никотиновый холинорецептор. Соединение ацетилхолина с этим рецептором изменяет его конформацию и этот же белок рецептор начинает выполнять функцию ионного канала, пропуская внутрь мышечного волокна ионы натрия, так начинается процесс возбуждения.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: