Физико-химические свойства крови: вязкость, удельный вес, осмотическое и онкотическое давление




Осмотическое давление крови зависит от концентрации в плазме крови молекул растворенных в ней веществ (электролитов и не­электролитов) и представляет собой сумму осмотических давлений содержащихся в ней ингредиентов. При этом свыше 60% осмоти­ческого давления создается хлористым натрием, а всего на долю неорганических электролитов приходится до 96% от общего осмо­тического давления. Осмотическое давление является одной из жест­ких гомеостатических констант и составляет у здорового человека в среднем 7,6 атм с возможным диапазоном колебаний 7,3-8,0 атм.

  • Изо­тонический раствор. Если жидкость внутренней среды или искусственно приготовленный раствор имеет такое же осмотическое давление, как нормальная плазма крови, подобную жидкую среду или раствор называют изо­тоническим.
  • Гипертонический раствор. Жидкость с более высоким осмотичес­ким давлением называется гипертонической,
  • Гипотонический раствор. Жидкость с более низким осмотичес­ким давлением называется гипотонической.

Осмотическое давление обеспечивает переход растворителя через полунепроницаемую мембрану от раствора менее концентрированно­го к раствору более концентрированному, поэтому оно играет важ­ную роль в распределении воды между внутренней средой и клет­ками организма. Так, если тканевая жидкость будет гипертоничес­кой, то вода будет поступать в нее с двух сторон — из крови и из клеток, напротив, при гипотоничности внеклеточной среды вода переходит в клетки и кровь.

Аналогичную реакцию можно наблюдать со стороны эритроцитов крови при изменении осмотического давления плазмы: при гипертоничности плазмы эритроциты, отдавая воду, сморщиваются, а при гипотоничности плазмы набухают и даже лопаются. Последнее, ис­пользуется в практике для определения осмотической стойкости эритроцитов. Так, изотоничным плазме крови является 0,89% рас­твор NaCl. Помещенные в этот раствор эритроциты не изменяют формы. В резко гипотоничных растворах и, особенно, воде эритро­циты набухают и лопаются. Разрушение эритроцитов носит название гемолиз, а в гипотоничных растворах — осмотический гемолиз. Если приготовить ряд растворов NaCl с постепенно уменьшающейся кон­центрацией поваренной соли, т.е. гипотоничные растворы, и поме­шать в них взвесь эритроцитов, то можно найти ту концентрацию гипотоничного раствора, при котором начинается гемолиз и еди­ничные эритроциты разрушаются или гемолизируются. Эта концент­рация NaCl характеризует минимальную осмотическую резистентность эритроцитов (минимальный гемолиз), которая у здорового человека находится в пределах 0,5-0,4 (% раствора NaCl). В более гипотонических растворах все более количество эритроцитов гемолизируется и та концентрация NaCl, при которой все эритроциты будут лизированы, носит название максимальной осмотической резистентности (максимальный гемолиз). У здорового человека она колеблется от 0,34 до 0,30 (% раствора NaCl).
Механизмы регуляции осмотического гомеостазиса изложены в главе 12.

Онкотическое давление

Онкотическим давлением называют осмотическое дав­ление, создаваемое белками в коллоидном растворе, поэтому его еще называют коллоидно-осмотическим. Ввиду того, что белки плазмы кро­ви плохо проходят через стенки капилляров в тканевую микросреду, создаваемое ими онкотическое давление обеспечивает удержание воды в крови. Если осмотическое давление, обусловленное солями и мел­кими органическим молекулами, из-за проницаемости гистогематических барьеров одинаково в плазме и тканевой жидкости, то онкоти­ческое давление в крови существенно выше. Кроме плохой проница­емости барьеров для белков, меньшая их концентрация в тканевой жидкости связана с вымыванием белков из внеклеточной среды током лимфы. Таким образом, между кровью и тканевой жидкостью суще­ствует градиент концентрации белка и, соответственно, градиент онкотического давления. Так, если онкотическое давление плазмы крови составляет в среднем 25-30 мм рт.ст., а в тканевой жидкости — 4-5 мм рт.ст., то градиент давления равен 20-25 мм рт.ст. Поскольку из белков в плазме крови больше всего содержится альбуминов, а молекула альбумина меньше других белков и его моляльная концент­рация поэтому почти в 6 раз выше, то онкотическое давление плазмы создается преимущественно альбуминами. Снижение их содержания в плазме крови ведет к потере воды плазмой и отеку тканей, а увели­чение — к задержке воды в крови.

Коллоидная стабильность

Коллоидная стабильность плазмы крови обусловлена характером гидратации белковых молекул и наличием на их поверхности двой­ного электрического слоя ионов, создающего поверхностный или фи-потенциал. Частью фи-потенциала является электрокинетичес­кий (дзета) потенциал. Дзета-потенциал — это потенциал на гра­нице между коллоидной частицей, способной к движению в элект­рическом поле, и окружающей жидкостью, т.е. потенциал поверх­ности скольжения частицы в коллоидном растворе. Наличие дзета-потенциала на границах скольжения всех дисперсных частиц фор­мирует на них одноименные заряды и электростатические силы от­талкивания, что обеспечивает устойчивость коллоидного раствора и препятствует агрегации. Чем выше абсолютное значение этого по­тенциала, тем больше силы отталкивания белковых частиц друг от друга. Таким образом, дзета-потенциал является мерой устойчивости коллоидного раствора. Величина этого потенциала существенно выше у альбуминов плазмы, чем у других белков. Поскольку альбуминов в плазме значительно больше, коллоидная стабильность плазмы крови преимущественно определяется этими белками, обеспечива­ющими коллоидную устойчивость не только других белков, но и углеводов и липидов.

Суспензи­онные свойства

Суспензи­онные свойства крови связаны с коллоидной стабильностью белков плазмы т.е. поддержание клеточных элементов во взвешенном состоянии. Величина суспензионных свойств крови может быть оценена по скорости оседания эритроцитов (СОЭ) в неподвижном объеме крови.

Таким образом, чем выше содержание альбуминов по сравнению с другими, менее стабильными коллоидными частицами, тем больше и суспензионная способность крови, поскольку альбумины адсорбируются на поверхности эритроцитов. Наоборот, при повышении в крови уровня глобулинов, фибриногена, других крупномолекулярных и нестабильных в коллоидном растворе белков, скорость оседания эритроцитов нарастает, т.е. суспензионные свойства крови падают. В норме СОЭ у мужчин 4-10 мм/ч, а у женщин — 5-12 мм/ч.

Вязкость крови

Вязкость — это способность оказывать сопротивление течению жидкости при перемещениях одних частиц относительно других за счет внутреннего трения. В связи с этим, вязкость крови представ­ляет собой сложный эффект взаимоотношений между водой и мак­ромолекулами коллоидов с одной стороны, плазмой и форменными элементами — с другой. Поэтому вязкость плазмы и вязкость, цель­ной крови существенно отличаются: вязкость плазмы в 1,8 — 2,5 раза выше, чем воды, а вязкость крови выше вязкости воды в 4- 5 раз. Чем больше в плазме крови содержится крупномолекулярных белков, особенно фибриногена, липопротеинов, тем выше вязкость плазмы. При увеличении количества эритроцитов, особенно их со­отношения с плазмой, т.е. гематокрита, вязкость крови резко воз­растает. Повышению вязкости способствует и снижение суспензион­ных свойств крови, когда эритроциты начинают образовывать агре­гаты. При этом отмечается положительная обратная связь — по­вышение вязкости, в свою очередь, усиливает агрегацию эритроци­тов — что может вести к порочному кругу. Поскольку кровь — неоднородная среда и относится к неньютоновским жидкостям, для которых свойственна структурная вязкость, постольку снижение дав­ления потока, например, артериального давления, повышает вяз­кость крови, а при повышении давления из-за разрушения струк­турированности системы — вязкость падает.

Еше одной особенностью крови как системы, обладающей наряду с ньютоновской и структурной вязкостью, является, эффект Фареуса-Линдквиста. В однородной ньютоновской жидкости, согласно закону Пуазейля, с уменьшением диаметра трубки повышается вяз­кость. Кровь, которая является неоднородной неньютоновской жид­костью, ведет себя иначе. С уменьшением радиуса капилляров менее 150 мк вязкость крови начинает снижаться. Эффект Фареуса-Линдквиста облегчает движение крови в капиллярах кровеносного русла. Механизм этого эффекта связан с образованием пристеночного слоя плазмы, вязкость которой ниже, чем у цельной крови, и миграцией эритроцитов в осевой ток. С уменьшением диаметра сосудов толщина пристеночного слоя не меняется. Эритроцитов в движущейся по узким сосудам крови становится по отношению к слою плазмы меньше, т.к. часть из них задерживается при вхождении крови в узкие сосуды, а находящиеся в своем токе эритроциты двигаются быстрее и время пребывания их в узком сосуде уменьшается.

Вязкость крови прямо пропорционально сказывается на величине общего периферического сосудистого сопротивления кровотоку, т.е. влияет на функциональное состояние сердечно-сосудистой системы.

Удельный вес крови

Удельный вес крови у здорового человека среднего возраста со­ставляет от 1,052 до 1,064 и зависит от количества эритроцитов, содержания в них гемоглобина, состава плазмы.
У мужчин удельный вес выше, чем у женщин за счет разного содержания эритроцитов. Удельный вес эритроцитов (1,094-1,107) существенно выше, чем у плазмы (1,024-1,030), поэтому во всех случаях повышения гематокрита, например, при сгущении крови из-за потери жидкости при потоотделении в условиях тяжелой физической работы и высокой температуры среды, отмечается увеличение удельного веса крови.

4. Определение осмотической резистентности эритроцитов:

Осмотическая резистентность эритроцитов характеризует их устойчивость относительно деструктивных факторов: химических, температурных, механических. При лабораторных опытах особое внимание уделяется их стойкости к гипотоническим р-рам NaCl, а именно, какая концентрация вызывает гемолиз. Нормально функционирующие клетки сопротивляются осмосу и сохранят прочность. Такая способность характеризует осмотическую устойчивость, или резистентность эритроцитов.
Если они становятся слабыми, то маркируются иммунной системой, после чего удаляются из организма.
Метод исследования: Основной лабораторный метод определения стойкости эритроцитов к разрушению – это реакция гипотонического солевого раствора и крови, смешанного в одинаковых объемах. Анализ позволяет выявить стабильность мембраны клетки. Альтернативный метод определения ОРЭ – фотоколориметрический, при котором измерения производят специальным аппаратом – фотоколориметром. Физраствор представляет собой смесь дистиллированной воды и хлорида натрия. В растворе с концентрацией 0,85% эритроциты не разрушаются, его называют изотоническим. При более высокой концентрации получится гипертонический, а ниже – гипотонический раствор.
В них эритроциты погибают, сжимаясь в гипертоническом, и набухая в гипотоническом р-ре.
Как проводится процедура? Определение ОРЭ проводится добавлением равного количества крови (обычно 0,22 мл) в гипотонический раствор NaCl различных концентраций (0,7-0,22%). После часа выдержки смесь центрифугируют. В зависимости от цвета устанавливают начало распада и полный гемолиз. В начале процесса раствор имеет слегка розовый цвет, а ярко красный свидетельствует о полном распаде эритроцитов. Результат выражается в двух характеристиках резистентности, имеющих процентное выражение – минимальной и максимальной.
При наличии вторичной гемолитической анемии при дефиците глюклзо-6-фосфатдигидрогеназы, анализ может показать нормальную ОРЭ, что обязательно учитывают перед проведением исследования
Показатели нормы Норма резистентности для взрослого человека независимо от пола является следующей (%): Максимальная – 0,34-0,32. Минимальная – 0,48-0,46.
В детском возрасте до 2 лет осмотическая устойчивость несколько выше нормального показателя, а норма ОРЭ у пожилых людей, как правило, ниже от стандартного минимального показателя.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-06-11 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: