Микроволновые телескопы. Телескоп Planck




[16]«Аппарат Planck был запущен 14 мая 2009 г. Основная задача телескопа: измерение вариаций температуры реликтового микроволнового фона с чувствительностью и угловым разрешением, позволяющими по-новому увидеть нашу Вселенную в возрасте около 380 тыс. лет.

Уже первый полный обзор небесной сферы на частотах от 30 до 857 ГГц, составленный по данным, полученным в период с августа 2009 г. по июнь 2010 г., показал исключительные возможности нового инструмента. «Пестрая» структура реликтового микроволнового фона с хорошо заметными крошечными температурными колебаниями демонстрирует изначальные вариации плотности излучения - благодаря этим неоднородностям и возникло в дальнейшем все нынешнее разнообразие космических объектов. Особенно отчетливо она просматривается на высоких галактических широтах, где ее не «перекрывает» излучение нашей Галактики.

В актив телескопа Planck следует зачислить составление карты распределения угарного газа (моноксида углерода СО) в нашей звездной системе. Поскольку холодный водород (Н2) излучает довольно слабо, ученые могут исследовать лишь такие области звездообразования, где его концентрация достаточно высока. Поэтому астрономы пытаются искать другие «маркеры» межзвездных молекулярных облаков с более высокой излучательной способностью.

Картографирование холодных молекулярных облаков, содержащих угарный газ, проведено телескопом практически для всех хорошо изученных регионов звездообразования. Для каждого из них характерны некоторые отличия (местный «газовый ландшафт»), определяемые в основном их пространственным расположением - в первую очередь удаленностью от галактического экватора.

Открытые телескопом Planck огромные скопления (кластеры) галактик, удаленные от нас на миллиарды световых лет, являются самыми большими структурами Вселенной. Теперь их известно около 200, но ученые считают, что это только вершина айсберга - реально их число может быть на порядок больше. Каждый такой кластер, удерживаемый от «разлетания» силами гравитации, может включать несколько сотен галактик с сотнями миллиардов звезд в каждой. Planck был использован для составления предварительного полного каталога скоплений галактик (и кандидатов в кластеры). Сейчас этот список состоит из 189 скоплений, распределенных по всему небу. Их массы заключены в весьма широких пределах (1-15*1014 солнечных масс), диапазон красных смещений - 0,0-0,45.»

[17] «Главной задачей миссии Planck является измерение мелкомасштабных флуктуаций космического микроволнового фона. Однако их прямые измерения сопряжены с большими трудностями, поскольку за время, прошедшее с момента Большого Взрыва, во Вселенной образовалось неимоверно большое количество структур всевозможных размеров - от сравнительно небольших скоплений пыли и газа до сверхскоплений галактик, излучающих в инфракрасном и радиодиапазоне и существенно затрудняющих наблюдения самого фона. Поэтому перед реализацией основного проекта - построения глобальной карты реликтового излучения -ученые задались целью создать каталог всех микроволновых небесных объектов. Для создания такого каталога потребовалось провести два полномасштабных обзора всего неба на всех восьми частотах, доступных детекторам телескопа. Естественно, для всех мощных микроволновых источников были проведены тщательные определения индивидуальных особенностей излучения.

Каталог ERCSC (Early Release Compact Source Catalogue) содержит более 15 тыс. компактных источников - как галактических (особых структур межзвездной среды, ядер холодных молекулярных облаков, звезд с пылевыми оболочками), так и внегалактических (радиогалактик, квазаров, инфракрасных галактик, галактических скоплений и сверхскоплений, неотождествленных источников). Кроме того, в него были включены найденные ранее в рамках отдельных задач 189 кандидатов в галактические кластеры, отождествленных с использованием эффекта Сюняева-Зельдовича, а также Каталог Холодных ядер, содержащий 915 ядер молекулярных облаков с температурой ниже 14 К (обычной температуры пыли в Галактике).

К интересным особенностям инфракрасной картины неба, обнаруженным телескопом Planck, можно отнести детектирование предельно быстро вращающихся пылевых частиц, а также объяснение избытка излучения, пронизывающего Малое Магелланово Облако.

Пылевая компонента в межзвездной среде «светит» главным образом в инфракрасном и субмиллиметровом диапазонах, но ее излучение в радиодиапазоне стало большим сюрпризом для ученых. Совершенно неожиданно в 1990-х годах сильная эмиссия приходящая из запыленных областей Млечного Пути, была обнаружена в микроволновой части спектра - ее назвали аномальной микроволновой эмиссией (АМЕ). Наблюдения телескопа Planck позволили окончательно определиться с источниками этой эмиссии: она обусловлена пылевыми частицами нанометровых размеров, которые вращаются со скоростью десятков тысяч оборотов в секунду, Это наименьшие из известных пылевых частиц - они состоят из 10-50 атомов, а их «раскрутка» осуществляется при столкновениях с атомами межзвездного газа и фотонами. Излучают они на частотах 10-60 ГГц.

Наблюдения, сосредоточенные на двух хорошо исследованных областях звездообразования - молекулярных облаках Персея и ρ Змееносца - позволили выявить такие тонкие эффекты в картине эмиссионной активности, что из всех возможных объяснений осталось одно, самое убедительное: значительная часть АМЕ (возможно, даже все) обусловлена эмиссией быстровращающихся пылевых частиц.

Эта корректировка дала возможность точнее оценить возраст нашего мира. Согласно новым данным, он составляет 13,82 млрд. лет (на несколько десятков миллионов лет больше, чем считалось до сих пор). Кроме того, по данным телескопа Planck, во Вселенной имеется не 22,7% темной материи, а 26,8%. Доля обычной материи равна 4,9%, соответственно 68,3% приходится на темную энергию.
Planck также подтвердил существование аномалий микроволнового фона, открытых его предшественником - зондом WMAP (NASA), который обнаружил, что температура разных «полушарий» Вселенной отличается. Более чувствительные приборы нового космического аппарата зарегистрировали в реликтовом излучении «холодные пятна»»

Инфракрасные телескопы

[18]«Инфракрасные телескопы – это вид телескопов, которые применяются в астрономии для исследования теплового излучения космических объектов. Инфракрасное излучение –электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны 0,74 мкм) и микроволновым излучением (1-2 мм). Другое название инфракрасного излучения – «тепловое» излучение.

Действительно, все тела, твердые и жидкие, нагретые до определенной температуры, излучают энергию в инфракрасном спектре. При этом длины волн, излучаемые телом, зависят от температуры нагревания: чем выше температура, тем короче длина волны и выше интенсивность излучения

В настоящее время известно три составляющих диапазона инфракрасного излучения: коротковолновая, средневолновая и длинноволновая область. Длинноволновую область иногда называют терагерцовым излучением. Доказано, что земная атмосфера пропускает инфракрасное излучение только определенного диапазона: 0,75-5 мкм. Для остальной части лучей она непрозрачна. Тем не менее, инфракрасное наблюдение активно используется в астрономии с 19 века. С помощью инфракрасных телескопов зачастую можно сделать такие наблюдения, которые невыполнимы с помощью обычной астрономической техники.

Принцип действия инфракрасного телескопа состоит в принятии и обработке теплового излучения. Основным элементом первых инфракрасных телескопов была полоска фольги, обладающая черной поверхностью. Если через фольгу пропустить ток, то при изменении температуры металла, меняется его сопротивление. Следовательно, изменяются и показатели тока. В зависимости от этих показателей можно рассчитать интенсивность теплового излучения.

Существуют телескопы, которые одновременно являются оптическими и инфракрасными, например знаменитый Хаббл. Тепловые лучи отражаются обычным телескопическим объективом и фокусируются в одной точке, где размещается прибор, измеряющий тепло. Также существуют инфракрасные фильтры, пропускающие только тепловые лучи. С такими фильтрами происходит фотографирование.

В первую очередь возможности инфракрасных телескопов были использованы для изучения планет Солнечной системы. С помощью тепловых наблюдений удалось уточнить структуру атмосфер некоторых планет, обнаружить водяной лед на поверхности спутников планет-гигантов, открыть собственное тепловое излучение Сатурна и Юпитера. С помощью инфракрасных телескопов ученым удалось составить новую «тепловую» карту вселенной, которая во многом отличается от привычной карты звездного неба. На ней можно увидеть как остывшие планеты, так и места возможного образования новых звезд. В настоящее время в мире существует множество инфракрасных телескопов, которые предназначены для наблюдений с высоких точек земной поверхности, стратостатов, высотных самолетов и даже космических спутников»



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-27 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: