ХАРАКТЕРИСТИКИ ПЕРЕМЕННЫХ РЕЗИСТОРОВ




Переменные резисторы дополнительно характеризуют рядом параметров: функциональной характеристикой, разрешающей способностью, шумами скольжения, износоустойчивостью и некоторыми другими.

Функциональная характеристика определяет зависимость сопротивления переменного резистора или напряжения от положения подвижного контакта. По характеру функциональной зависимости переменные резисторы делятся на линейные - типа А и нелинейные - типов Б, В, И, Е и др.. Из резисторов с нелинейной функциональной характеристикой наиболее распространены резисторы с логарифмической (Б) и обратнологарифмической (В) зависимостями. Резисторы с такими зависимостями применяются для регулировки громкости и тембра звука, яркости свечения индикаторов и др. Резисторы с характеристиками Е и И используют в регулировке стереобаланса, а резисторы с косинусными и синусными зависимостями применяют в устройствах автоматики и вычислительной техники.

Отклонения от заданной кривой определяются допусками. Для резисторов общего применения допуск устанавливается в пределах 2 - 20%, а для прецизионных - в пределах 0,05 - 1%.

Разрешающая способность показывает, при каком наименьшем изменении угла поворота или перемещении подвижной системы может быть различимо изменение сопротивления резистора. У непроволочных резисторов разрешающая способность очень высокая и ограничивается дефектами резистивного элемента и контактной щетки, а также переходным сопротивлением между проводящим слоем и подвижным контактом.

Разрешающая способность переменных проволочных резисторов зависит от числа витков резистивного элемента и определяется изменением сопротивления при перемещении подвижного контакта на один виток. Чем больше витков содержит резистивный элемент, тем выше разрешающая способность. Разрешающая способность резисторов общего применения находится в пределах 0,1 - 3%, а прецизионных - до тысячных долей процента.

Шумами скольжения переменных резисторов принято считать шумы (напряжение помех), возникающие при движении (скольжении) подвижного контакта по резистивному элементу. Причиной таких шумов являются контактная разность потенциалов между щеткой и резистивным элементом, неоднородность структуры переходного контакта и э.д.с., возникающая при быстром вращении подвижной системы. Уровень этих шумов выше уровня тепловых и токовых шумов резистора.

Под износоустойчивостью понимают способность резистора сохранять свои параметры при многократных перемещениях подвижной системы. Износоустойчивость в основном определяется материалом и формой подвижного контакта и резистивного элемента и контактным давлением. При движении происходит износ резистивного элемента и подвижного контакта, интенсивность которого возрастает с увеличением контактного давления. Однако уменьшение контактного давления способствует увеличению шумов вращения и снижению стойкости к механическим воздействиям. Количественно износоустойчивость оценивается максимально допустимым числом циклов перемещения подвижной системы, при котором параметры резистора остаются в пределах норм. Износоустойчивость прецизионных резисторов 105 - 107 циклов, но их вибрационная и ударная стойкость ниже, чем резисторов общего назначения. Регулировочные резисторы общего назначения обладают износоустойчивостью 5000 - 100000 циклов, а подстроечные - не больше 1000.

ПОСТОЯННЫЕ РЕЗИСТОРЫ

Углеродистые резисторы представляют собой тонкую пленку углерода, осажденную на основание из керамики (стержень или трубку). Углеродистые резисторы характеризуются высокой стабильностью сопротивления, низким уровнем собственных шумов, небольшим отрицательным ТКС (5-20)·10-4 1/°C, слабой зависимостью сопротивления от частоты и приложенного напряжения. Выпускаются резисторы общего назначения (С1-4, ВСа, ВС), высокочастотные (УНУ, УНУ-Ш). Для повышения стабильности в углерод добавляют бор. Бороуглеродистые резисторы (БЛП) имеют ТКС = -(0,12-0,2)10-4 1/ °C, меньший уровень шумов (не более 0,5 мкВ/В и допуск 0.5; 1%).

Композиционные резисторы. Резистивный элемент этих резисторов изготавливается из смеси (композиции), состоящей из проводящего компонента (сажа, графит) и органического или неорганического диэлектрика. Композиционные резисторы выпускаются пленочного и объемного видов. Пленочные резисторы изготавливают нанесением композиции на керамическую трубку или стержень. Объемные композиционные резисторы представляют собой стержни, прессованные из композиционной смеси.

Достоинством пленочных композиционных резисторов является простота их изготовления и повышенная надежность, обусловленная значительной толщиной резистивного слоя. Недостатками этого вида резисторов являются зависимость сопротивления от напряжения, низкая стабильность, большой уровень собственных шумов, большие диэлектрические потери на высокой частоте, зависимость сопротивления от частоты, температуры и влажности. Это резисторы специального назначения: высокомегаомные (С3-13, С3-14, КВМ, КЛМ), сопротивление которых лежит в пределах от 100кОМ до 1тОм, высоковольтные (С3-9, С3-12, С3-14, С3-5, КЭВ) с сопротивлением до 45ГОм и предельным напряжением до 60кВ (КЭВ), а также малогабаритные резисторы типа КИМ для микроэлементной аппаратуры.

Объемные композиционные резисторы более дешевы и просты в производстве, чем пленочные. Они менее чувствительны к кратковременным перегрузкам, характеризуются большей надежностью, особенно при работе в тяжелых климатических условиях. К ним относятся резисторы общего назначения типа С4-2, С4-3, ТВО.

Металлодиэлектрические, металлизированные и металлоокисные резисторы. Резистивный элемент этих резисторов изготавливают в виде тонкой пленки, представляющей собой микрокомпозицию из диэлектрика (стекло, керамика, полимерные материалы) и проводника (палладий, родий, двуокись олова и др.), пленки металла (вольфрама, хрома, тантала, титана) или сплавов металлов с хромом, кремнием, пленки окиси металла (чаще всего окиси олова).

Эти резисторы характеризуются высокой стабильностью, слабой зависимостью сопротивления от частоты и напряжения, теплостойкостью и влагостойкостью, малым уровнем шумов, небольшими размерами, высокой надежностью. Их недостатком является пониженная стойкость к импульсным нагрузкам, а также невозможность изготовления высокомегаомных резисторов.

На основе металлоокисного резистивного элемента изготавливают прецизионные резисторы (С2-1), которые могут работать при высоких (до 200°C) температурах, высокочастотные (МОУ, МОУ-Ш).

Металлизированные резисторы типа С6-1 - С6-9 применяют для работы в диапазоне СВЧ вплоть до частот 26 ГГц. Они используются в аттенюаторах СВЧ, в измерительных цепях и т.д. Конструктивно выполнены без выводов, за исключением резисторов типа С6-5, у которых рабочий диапазон ограничен частотой 100МГц.

Металлодиэлектрические резисторы общего назначения МЛТ и ОМЛТ наиболее широко используются в радиоэлектронной аппаратуре. Они обладают высокими электрическими, конструктивными и эксплуатационными характеристиками: диапазон номинальных значений сопротивления от 8,2 до 10 · 106 Ом; номинальная мощность рассеивания в зависимости от типоразмера - 0,125 - 2 Вт; ТКС = (5-12)·10-4 1/°C; допустимые отклонения сопротивления 2; 5; 10%; масса 0,15 - 3,5 г.

Аналогичную конструкцию имеют резисторы типа МТ (обладают повышенной теплостойкостью, могут эксплуатироваться при температуре окружающей среды до 200°C), С2-33И, С2-50 (характеризуются малым допуском на номинал - 0,5; 1; 2%; небольшим ТКС - +(1-2,5)· 10 -4 1/°C; меньшим уровнем шумов - до 1,5 мкВ/В).

Для применения в микроэлектронной аппаратуре и микросборках можно использовать резисторы Р1-4-0,25 и резисторы безвыводной конструкции Р1-11 и Р1-12, которые в схему впаивают непосредственно. Резисторы типа Р1-12 характеризуются следующими параметрами: диапазон номинальных сопротивлений 1 - 6,8·106Ом; допуск на номинал 5; 1 0; 20%; ТКС=+(1,5-5)·10-4 1/°C; уровень собственных шумов зависит от величины сопротивления и изменяется от 1 до 50мкВ/В.

Кроме резисторов общего применения выпускают металлодиэлектрические прецизионные резисторы (С2-29В, С2-36, С2-1 и др.) и высокочастотные (С2-10, С2-34).

Прецизионные металлодиэлектрические резисторы обладают мощностью рассеяния от 0,062 до 2Вт, диапазоном номинальных сопротивлений от 1 до 20·106 Ом, допуском от 0,05 до 1%; ТКС - +(0,05-10)·10-4 1/°C; уровнем шумов - от 0,5 до 5 мкВ/В.

Проволочные резисторы выполняют на цилиндрическом изоляционном основании с одно- или многослойной обмоткой. Для защиты от механических и климатических воздействий и закрепления витков все устройство покрывается лаками и эмалями или герметизируется.

Проволочные резисторы характеризуются высокой стабильностью сопротивления, низким уровнем шумов, большой номинальной мощностью, высокой точностью сопротивления.

В зависимости от назначения проволочные резисторы можно разделить на резисторы общего назначения (нагрузочные) и прецизионные.

Нагрузочные резисторы имеют номинальную мощность от 3 до 100Вт и номинальное сопротивление от 0,066 до 50·103 Ом. Применяют такие резисторы в качестве делителей напряжения, различных нагрузок, поглотительных и балластных сопротивлений.

Прецизионные резисторы характеризуются меньшей номинальной мощностью от 0,125 до 10Вт, большим диапазоном номинальных значений от 1 до 106 Ом, допуском от 0,05 до 2,0%, ТКС - (0,01-2)·10-4 1/°C.

Для использования в микроэлектронной аппаратуре и микросборках выпускают металлофольговые прецизионные резисторы С5-62, которые предназначены для функциональной подгонки высокоточных ГИС. Эти резисторы характеризуются диапазоном номинальных значений от 30 до 10·103 Ом, допуском от 0,05 до 1,0%; ТКС - +(0,2-0,3)·10-4 1/°C.

5. ОСНОВНЫЕ МЕТОДЫОБНАРУЖЕНИЯ НЕИСПРАВНОСТЕЙ РЕЗИСТОРОВ
 
Потеря работоспособности резисторов может наступить вследствие: а) обрыва выводов или перегорания, сопровождающегося разрывом или коротким замыканием токопроводящего слоя (витков) резистора; б) нарушения контакта между подвижным узлом и токопроводящим слоем переменного резистора; в) изменения сопротивления сверх допустимого; г) потери или уменьшения чувствительности (у фоторезисторов). Неработоспособный резистор может быть определен с помощью омметра, моста постоянного тока, вольтметра или методом вольтметра-амперметра. Отклонения (броски) стрелки прибора (если имеется стрелочный малоинерционный), включенного между средним и одним из крайних выводов переменного резистора при медленном перемещении подвижного контакта, свидетельствуют об имеющихся нарушениях контакта. Исправность терморезисторов, используемых в качестве датчиков температуры, может быть приближенно определена по их сопротивлению. Если объект контроля находится в нерабочем состоянии и его температура равна температуре окружающей среды (до +45°С), то сопротивление измеряемого терморезистора с отрицательным температурным коэффициентом сопротивления (ТКС) находится обычно в пределах 3—60 кОм и резко увеличивается при снижении температуры. Сопротивление терморезистора с положительными ТКС (позисторов) до температуры, при которой сопротивление резко возрастает (обычно в интервале 105—170°С), находится в пределах 20—250 Ом. Определение исправности фоторезисторов выполняется изменением сопротивления освещенного и затемненного фоторезистора посредством омметра или моста. Исправный фоторезистор имеет темновое сопротивление в пределах 106—108 Ом и световое при освещенности 200—300 лк на 2—3 порядка меньше. Указанная освещенность обеспечивается при засветке фоторезистора лампой накаливания (без отражателя) мощностью 40 Вт на расстоянии 0,6—0,7 м.
6. ОБЩИЕ УКАЗАНИЯ ПО ПОИСКУ НЕИСПРАВНОСТЕЙ
 

Наибольшую трудность вызывает поиск неисправностей в сложных разветвленных многоэлементных электронных схемах.

Предлагаемые в данном разделе методы контроля элементов электрических цепей не предполагают полного обнаружения и устранения неисправностей и дефектов всех видов, а являются наиболее обобщенными и применяемыми на самых первых этапах проверок схем и цепей.

Более точные и конкретные методики проверок прилагаются к инструкциям по эксплуатации серийно выпускаемой бытовой техники и электроприборов.

Наиболее часто встречающиеся неисправности в электрических схемах электроприборов и бытовой техники:

1) обрыв (сопротивление электрической цепи равно бесконечности);
2) значительное увеличение сопротивления;
3) значительное уменьшение сопротивления;
4) короткое замыкание (сопротивление электрической цепи близко к нулю).

Общие причины возникновения этих неисправностей:
— обрыв из-за старения элементов, прохождения повышенных токов, ударов, вибрации и коррозии;
— значительное увеличение сопротивления электрических цепей по сравнению с номинальным значением, вызываемое старением элементов, ухудшением контактов и контактных соединений, отклонением параметров отдельных элементов;
— значительное уменьшение сопротивления электрических цепей по сравнению с номинальным значением из-за увеличения поверхностных утечек и старения элементов.

Короткие замыкания являются следствием пробоя изоляции, замыкания проводников и элементов на корпус и между собой (для проводников разных полярностей и фаз).

При поиске неисправности необходимо знать и уметь использовать признаки исправной работы электрооборудования.

Их можно разделить на две основные группы:
активные — показания световых и звуковых сигналов, сигнализаторов, срабатывания средств защиты, а также признаки, выявляемые при измерении прибором;
пассивные или вторичные признаки, воспринимаемые при внешнем осмотре электрооборудования (визуальные, звуковые, осязательные, обонятельные).

Световые и звуковые сигналы, сигнализаторы позволяют наблюдать за состоянием электроприборов.

Средства защиты (предохранители, максимальные или минимальные реле, автоматы и т. п.), срабатывая, отключают электрические цепи от источников электроэнергии при наличии в отключенной части схемы повышенных токов утечки, токов перегрузки и коротких замыканий.

При неисправностях - типа обрыва - защита обычно не срабатывает, но ее нормальное состояние при наличии неисправности в электрической схеме является косвенным свидетельством того, что повреждение имеет характер обрыва.

Поиск неисправностей производится путем направленных измерений параметров элементов электрических схем с помощью переносных приборов и измерительных комплектов, используя активные признаки.

При измерении параметров (сопротивление, ток, напряжение) отдельных элементов в электрических схемах (например, логических систем управления и т. п.) с помощью переносных приборов необходимо использовать карты сопротивлений, напряжений, токов на выходе отдельных элементов и блоков, приводимые в инструкциях по эксплуатации этих аппаратов.

При проведении специальных направленных измерений в практике используется ряд частных способов поиска неисправностей:

— промежуточных измерений, дающих возможность последовательно проследить прохождение сигналов по различным каналам системы;
— исключения, позволяющий посредством измерений исключить исправные части проверяемой схемы и выделить отказавший элемент;
— замены блоков (деталей), в которых предполагается наличие неисправности, на однотипные заведомо исправные;
— сравнения результатов испытаний отказавшей схемы с результатами испытаний исправной схемы того же типа, эксплуатируемой в тех же условиях.

В общем случае поиск неисправностей состоит из следующих
этапов:


а) установление факта неисправности электроприбора
по изменению активных и пассивных признаков нормальной работы;
б) анализ имеющихся признаков неисправностей и сопоставление их с возможным состоянием элементов электроприбора;
в) сравнение признаков неисправностей, указанных в инструкциях по эксплуатации и известных из опыта эксплуатации, с наблюдаемыми признаками;
г) выбор оптимальной последовательности поиска и объема дополнительных измерений для обследования элементов, в которых возможно появление неисправностей;
д) последовательное измерение;
е) общая оценка результатов испытаний и заключение о наиболее вероятных причинах неисправности выделенного элемента;
ж) устранение неисправности.

Основными причинами неисправности элементов электроники являются:

— перегрузки по току;
— перенапряжения;
— повышенная температура окружающей среды;
— недопустимая вибрация, удары.

При возникновении неисправности или отказа объекта (системы, устройства, блока, модуля, электронной платы) поиск неисправного элемента электроники рекомендуется начинать после предварительной проверки исправности:

— сигнальных ламп, предохранителей, выключателей и других средств коммутации и защиты объекта;

— блока или узла питания объекта путем измерения вольтметром напряжения на входе и выходе;

— внешних устройств — датчиков, сигнализаторов, конечных выключателей, мониторов, кинескопов, акустических систем и т. д.


После этого рекомендуется проверить значения напряжений или параметров импульсов в предусмотренных инструкцией по эксплуатации контрольных точках.


Дальнейший поиск неисправного элемента рекомендуется выполнять, с учетом следующих указаний:


— должен быть изучен и уяснен принцип действия неисправного объекта;
— вначале отыскивается более сложный неисправный объект, далее - более простой (по принципу система - блок - узел - элемент);
— анализируются признаки неисправности, выдвигаются предположения ее причин и выбирается метод проверки;
— проводится выборочная проверка участков и отдельных элементах, неисправности которых наиболее вероятны, а проверка их занимает наименьшее время;


— если выборочной проверкой неисправный элемент не обнаружен, следует перейти к поиску методом исключения, двигаясь от входа к выходу объекта, либо деля его перед началом следующей проверки на две равные по трудоемкости проверки части;
— если неисправность нехарактерна, то целесообразно, опустив этап выборочной проверки, начинать поиск сразу с метода исключения.


Вводить и выводить из действия съемные объекты для осмотра, замены на запасные или поиска неисправных элементов рекомендуется при выключенном напряжении питания, особенно при наличии разъемных контактных соединений.


При внешнем осмотре объекта необходимо обращать внимание:


— на нарушения защитных и изоляционных покрытий;
— на изменение цвета, наличие потемнений, вздутий и трещин;
— на исправность креплений, контактных поверхностей, соединений и паек;
— на температуру элементов (корпусов, транзисторов, резисторов, диодов, микросхем, электролитических конденсаторов) сразу же после выключения схемы.


При этом необходимо помнить, что температура корпусов при нормальной эксплуатации не должна превышать 45-60°С - на ощупь (превышение температуры выше 60°С рука не терпит).


Элементы с обнаруженными изъянами подлежит проверке в первую очередь.


Определение неисправного элемента в объекте, находящемся под напряжением, рекомендуется выполнять с использованием исправных удлинителей и переходных устройств, измерительных приборов с высоким внутренним сопротивлением и имеющихся в документации указаний о значениях и полярности потенциалов.


При отсутствии необходимых данных поиск может производиться путем сравнения по участкам напряжений на одинаковых элементах заведомо исправного (запасного или аналогичного) и неисправного объектов.


Определение неисправного элемента без подачи напряжения на объект может производиться измерением сопротивлений посредством омметра по участкам или элементам, работоспособность
которых вызывает сомнение.


При необходимости один или несколько выводов элементов могут быть отключены (отпаяны).
При нарушении исправности элемента (увеличение тока утечки, уменьшение сопротивления изоляции или напряжения переключения и т. п.) необходимо выполнить измерения его основных параметров посредством обычных или специальных приборов и проверочных схем.

При отсутствии паспортных данных элемента результаты измерений могут быть сопоставлены с аналогичными данными запасных заведомо исправных элементов.


В процессе поиска, проверки и замены неисправных элементов (особенно полупроводниковых приборов) с использованием наиболее простых средств необходимо внимательно маркировать выводы приборов.


После обнаружения неисправного элемента анализируются возможные причины неисправности, которые должны быть устранены до замены его и ввода объекта в действие.


Для повышения достоверности результатов измерение параметров элементов рекомендуется выполнять в сухом помещении при температуре воздуха 20—25 °С (особенно для терморезисторов, германиевых диодов и транзисторов).


Если принятые меры по осмотру и проверке неисправного объекта не привели к восстановлению его работоспособности, а поиск неисправного элемента не дал результата, объект подлежит передаче в ремонт спец мастерские.


Самостоятельное вскрытие и ремонт сложных объектов, основанных на современных полупроводниковых элементах, при отсутствии четких указаний в инструкции по эксплуатации не рекомендуется.

 

 

СПИСОК ЛИТЕРАТУРЫ

1. Суриков В.С. - Основы электродинамики - М. «Протон» - 2000 г.

2. Карков И.С. - Физика элементарных частиц. - М. - 1999 г.

3. Синджанов И.К. Электродинамика - М. 1998 г.

4. Электротехнические материалы. Справочник / В.Б. Березин, Н.С. Прохоров, А.М. Хайкин. - М.: Энергоатомиздат, 1993. - 504с.

5. Рычина Т.А., Зеленский А.В. Устройства функциональной электроники и электрорадиоэлементы. - М.: Радио и связь, 1999. - 352с.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-11 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: