Аналогия между поступательным и вращательным движениями




Между движением твердого тела вокруг неподвижной оси и движением отдельной материальной точки (или поступательным движением тела) существует тесная и далеко идущая аналогия. Каждой линейной величине из кинематики точки соответствует подобная величина из кинематики вращения твердого тела. Координате s соответствует угол φ, линейной скорости
v – угловая скорость w, линейному (касательному) ускорению а – угловое ускорение ε Поступательное движение можно рассматривать, как вращательное, с радиусом вращения, стремящимся к бесконечности, и угловой скоростью, стремящейся к нулю.

 

 

6. Дифференциальные и кинематические уравнения колебаний. Маятники. Параметры колебания

Дифференциальные уравнения колебаний

МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ

· Уравнение гармонических колебаний

,

где – смещение точки от положения равновесия, А – амплитуда колебаний, - фаза колебаний, w 0– круговая (циклическая частота), t – время, – начальная фаза колебаний.

,

где – частота колебаний, – период колебаний.

· Скорость и ускорение при гармонических колебаниях

,

- амплитуда скорости (максимальное значение);

,

- амплитуда ускорения (максимальное значение).

При графики зависимостей представлены на рис. 1(а,б,в), соответственно.

· Возвращающая сила

,

где – коэффициент упругой (квазиупругой) силы, m – масса материальной точки;

- амплитуда силы (максимальное значение).

· Кинетическая энергия колеблющейся точки

-амплитуда кинетической энергии (максимальное значение).

 

 

а а

 

б б

 

в в

Рис. 1 Рис. 2

 

· Потенциальная энергия колеблющейся точки

-амплитуда потенциальной энергии (максимальное значение).

При графики зависимостей кинетической и потенциальной энергии от времени представлены на рис. 2а и 2б, соответственно.

· Полная энергия при гармонических колебаниях (рис. 2в)

.

· Уравнения гармонических колебаний могут быть заданы функциями синуса или косинуса. В таблице 1 даны значения скорости, ускорения, силы и энергии в обоих случаях.

Таблица 1

 

 

· Периоды колебаний:

– математический маятник ( – длина нити);

– пружинный маятник (m – масса тела, – коэффициент жесткости);

– физический маятник ( – момент инерции тела относительно оси, проходящей через точку подвеса, определяется по теореме Штейнера, m – масса тела, d – расстояние от точки подвеса до центра масс).

 

Пример: Однородный диск радиусом колеблется около горизонтальной оси, проходящей на расстоянии от центра диска. Определить период колебаний диска относительно этой оси (рис. 3).

 

Период определяется по формуле , где (нашли по теореме Штейнера). Тогда

Рис. 3

 

· Уравнение затухающих колебаний (рис. 4)

,

где – амплитуда колебаний в начальный момент времени, – коэффициент затухания, - зависимость амплитуды затухающих колебаний от времени, -частота затухающих колебаний, - частота собственных колебаний, - период затухающих колебаний.

 

· Уравнение вынужденных колебаний, совершаемых под действием периодически изменяющейся силы

, где

- амплитуда вынужденных колебаний;

- начальная фаза вынужденных колебаний;

и - частоты собственных и вынужденных колебаний.

· Резонанс – резкое возрастание амплитуды вынужденных колебаний при частоте, близкой к частоте собственных колебаний.

· Амплитуда при резонансе

.

· Резонансная частота

.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-04 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: