АРМИРОВАНИЕ ЖЕЛЕЗОБЕТОННЫХ ИЗДЕЛИЙ




В заводском производстве стоимость арматуры составляет около 20% себестоимости железобетонных изделий, поэтому вопросы организация арматурных работ на завод сборного железобетона являются важнейшими и в техническом и в экономическом отношениях. Различают армирование железобетонных изделий ненапряженное (обыкновенное) и предварительно напряженное. Операции армирования и виды арматуры для каждого из этих способов имеют ряд принципиальных различий.

Ненапряженное армирование

Армирование железобетонных изделий ненапряженной арматурой осуществляется при помощи плоских сеток и пространственных (объемных) каркасов, изготовленных из стальных стержней различного диаметра, сваренных между собой в местах пересечений. Различают арматуру рабочую (основную) и монтажную (вспомогательную). Рабочая арматура располагается в тех местах изделия, в которых под нагрузкой возникают растягивающие напряжения; арматура воспринимает их. Монтажная арматура располагается в сжатых или ненапряженных участках изделия. Кроме такой арматуры применяют петли и крюки, необходимые при погрузочных работах, а также закладные части, крепления и связи сборных элементов. Наименьшие трудовые затраты на армирование изделий и конструкций при применении арматурных каркасов наибольшей степени готовности, т. е. имеющих не только основную арматуру, но и вспомогательную с приваренными петлями, крюками, закладными деталями. В этом случае операции по армированию сводятся к установке готового арматурного каркаса в форму и его закреплению.

Арматурные сетки и каркасы изготовляют в арматурном цехе, оборудованном резательными, гибочными и сварочными аппаратами. Процесс изготовления строится по принципу единого технологического потока— от подготовки арматурной стали до получения готового изделия.

Арматурные сетки и каркасы делают по рабочим чертежам, в которых указаны длина и диаметр стержней, их количество, расстояния между ними, места приварки закладных частей, расположения монтажных петель. Устанавливать и раскреплять каркас в форме надо очень точно, так как от его положения зависит толщина защитного слоя бетона в изделии. При недостаточной толщине этого слоя может возникнуть коррозия арматурной стали.

Операции по изготовлению арматуры следующие: подготовка проволочной и прутковой стали — чистка, правка, резка, стыкование, гнутье;сборка стальных стержней в виде плоских сеток и каркасов;изготовление объемных арматурных каркасов, включая приварку монтажных петель, закладных частей и фиксаторов.

Подготовка арматуры, поступающей на завод в мотках и бунтах, заключается в их размотке, выпрямлении (правке), очистке и разрезке на отдельные стержни заданной длины. Правят и разрезают арматурную сталь на правильно-отрезных станках-автоматах.

Прутковую арматурную сталь разрезают на стержни заданной длины, а также стыкуют сваркой (для уменьшения отходов арматуры, если длина арматурных элементов не соответствует длине товарной продукции). Стыкуют стержни контактной стыковой электросваркой и только в отдельных случаях (при использовании стержней больших диаметров) дуговой сваркой. Контактная стыковая сварка осуществляется методом оплавления электрическим током торцов стержней в местах их будущего стыка, когда стержни сильно сжимаются и свариваются.

При изготовлении монтажных петель, хомутов и других фигурных элементов арматуры прутковая и проволочная арматурная сталь после разрезки подвергается гнутью.

Сетки и каркасы из стальных арматурных стержней соединяют точечной контактной электросваркой. Сущность ее заключается в следующем. При прохождении электрического тока через два пересекающихся стержня в местах их контакта электрическое сопротивление оказывается наибольшим, стержни разогреваются и, достигнув пластического состояния, свариваются. Прочности сварки способствует также сильное сжатие стержней. Процесс точечной сварки может длиться доли секунд при применении тока силой в несколько десятков тысяч ампер. Точечную сварку осуществляют специальными сварочными аппаратами. Они различаются мощностью трансформатора, количеством одновременно свариваемых точек (одно- и многоточечные аппараты), характером используемых устройств для сжатия свариваемых стержней.

Напряженное армирование

Предварительное напряжение арматуры при возведении зданий и сооружений в монолитном исполнении применяют для большепролетных ферм, балок, плит перекрытий, контурных элементов оболочек и др.

Предварительное напряжение в конструкциях создается по методу натяжения арматуры на затвердевший бетон с линейным ее расположением. При бетонировании напрягаемых конструкций в них оставляют каналы. По приобретении бетоном заданной прочности в каналы укладывают арматурные элементы и производят их натяжение с передачей усилий на напрягаемую конструкцию. Напрягаемые арматурные элементы применяют в виде отдельных стержней, прядей, канатов и проволочных пучков.

Натяжение арматуры производят различными способами: механическим электротермическим, непрерывным механическим и электромеханическим натяжением, а также химическим при применении расширяющегося цемента.

При механическом способе натяжения арматура растягивается осевой нагрузкой, создаваемой домкратами или другими натяжными машинами. Натяжение арматуры производят в следующем порядке. Сначала арматуру натягивают до усилия, равного 50% проектного напряжения причем осматривают зажимные устройства и расположение арматуры. Затем натяжение арматуры доводят до величины, превышающей на 10% проектное натяжение, но не более 0,75 предела прочности проволоки при растяжении, и в таком состоянии выдерживают в течение 5 мин, после чего натяжение снижают до проектной величины.

Отпуск напряженной арматуры (обжатие бетона) производят после достижения бетоном изделия необходимой прочности и проверки заанкеривания концов проволоки в бетоне. Фактическая прочность бетона определяется испытанием контрольных образцов. Прочность бетона ко времени отпуска арматуры составляет обычно 70% проектной прочности. Отпуск натяжения на стендах осуществляют постепенно в 2—3 этапа. Если постепенный отпуск натяжения невозможен, то натянутые проволоки разрезают симметрично относительно оси поперечного сечения, причем число одновременно разрезаемых проволок составляет не более 10—15% общего числа.

Сущность электротермического способа натяжения заключается в том, что удлинение арматуры достигается электрическим нагревом ее до определенной температуры, после чего нагретый стержень заанкери-вается с двух сторон в упорах формы или стенда, которые препятствуют укорочению стержня при его охлаждении. После бетонирования конструкции и отвердения бетона арматура освобождается от упоров и усилие натяжения арматуры передается на бетон. Этот метод, по сравнению с силовым, имеет преимущества как по простоте оборудования, так и по трудоемкости.

3. ФОРМОВАНИЕ ЖЕЛЕЗОБЕТОННЫХ ИЗДЕЛИЙ

Задача технологического комплекса операций по формованию состоит в получении плотных изделий заданных формы и размеров. Это обеспечивается применением соответствующих форм, а высокая плотность достигается уплотнением бетонной смеси. Операции процесса формования можно условно разделить на две группы: первая включает операции по изготовлению и подготовке форм (очистке, смазке, сборке), вторая — уплотнение бетона изделий и получение их заданной формы. Не менее важны при этом и транспортные операции, стоимость которых в общих затратах может достигать 10—15%. В отдельных случаях технико-экономический анализ транспортных операций определяет организацию технологического процесса в целом. Наиболее характерным в этом отношении является изготовление крупноразмерных особотяжелых изделий — балок, ферм, пролетных строений мостов, когда вследствие значительных затрат на перемещение изготовление изделий организуют на одном месте, т. е. принимают стендовую схему организации процесса. В общем технологическом комплексе изготовления железобетонных изделий операции формования занимают центральное и определяющее место. Все другие операции — приготовление бетонной смеси, подготовка арматуры — являются в какой-то степени подготовительными и могут выполняться вне площадки данного предприятия железобетонных изделий; бетонная смесь может быть получена централизованно с бетонного завода, арматурные изделия — из центральной арматурной мастерской района. Такая организация завода железобетонных изделий чрезвычайно выгодна в технико-экономическом отношении: стоимость и бетонной смеси и арматуры значительно ниже, чем при изготовлении их на заводе железобетонных изделий, так как мощность бетоносмесительных и арматурных цехов централизованного назначения во много раз. выше, чем этих же цехов завода железобетонных изделий. А если выше мощность, то и более совершенной может быть организация технологического процесса: оказывается выгодным применение автоматических линий и высокопроизводительного оборудования, существенно повышающих производительность труда, снижающих стоимость продукции и улучшающих ее качество. Однако подавляющее большинство заводов железобетонных изделий отказывается от такой рациональной организации технологического процесса, так как возможны нарушения в доставке необходимых полуфабрикатов; это тем более важно, если учесть, что создать запас бетонной смеси более чем на 1,5—2 ч работы формовочных линий невозможно — смесь начнет твердеть.

Формы и смазочные материалы

Для изготовления железобетонных изделий применяют деревянные, стальные и железобетонные, а иногда металложелезобетонные формы. Следует отметить, что вопрос выбора материала форм весьма принципиален как в техническом, так и в экономическом отношении. Потребность в формах завода сборного железобетона огромна. Объем форм на большинстве заводов должен быть не менее объема выпускаемых заводом изделий в течение суток при искусственном твердении и в 5—7 раз больше при естественном их вызревании. В ряде случаев потребность в формах определяет общую металлоемкость производства (вес единицы металла к единице выпускаемой продукции), существенно влияющую на технико-экономические показатели предприятия в целом. При этом надо учитывать также то, что формы работают в наиболее тяжелых условиях: систематически они подвергаются сборке и разборке, очистке приставшего к ним бетона, динамическим нагрузкам при уплотнении бетонной смеси и транспортировании, действию влажной (пар) среды в период твердения изделий. Все это неизбежно отражается на продолжительности их службы и требует систематического пополнения парка форм.

Металлические формы наиболее характерны для специализированных предприятий сборного железобетона. Долговечность, длительное сохранение своих размеров, простота сборки и разборки, высокая жесткость, исключающая деформацию изделий в процессе, изготовления и транспортирования, — вот достоинства металлических форм, определившие их широкое применение. Недостатки металлических форм заключаются в том, что они существенно повышают металлоемкость предприятия, ухудшая этим технико-экономические показатели проекта.

Металложелезобетонные формы, мало еще распространенные, занимают промежуточное место в технико-экономических показателях: первоначальные затраты на их изготовление оказываются не ниже, чем металлических, но они отличаются в 1,5—2 раза большим весом, что сказывается на транспортных, расходах. Достоинство металложелезобе-тонных форм заключается в том, что они позволяют сократить в 2—3 раза затраты металла на изготовление формы: металл расходуется только на бортовую оснастку формы, тогда как поддон, отличающийся наибольшей металлоемкостью (он должен иметь высокую жесткость), изготовляется железобетонным.

Независимо от материала к формам предъявляются следующие общие требования:

-обеспечение изделиям необходимых форм и. размеров и сохранение их в процессе всех технологических операций;

-минимальный вес по отношению к единице веса изделия, что достигается рациональной конструкцией форм;

-простота и минимальная трудоемкость сборки и разборки форм;

-высокая жесткость и способность сохранить свои форму и размеры при динамических нагрузках, неизбежно возникающих при транспортировании, распалубке изделий и сборке форм.

Особое значение для качества изделий и сохранности форм имеют качество и правильный выбор смазочных материалов, предназначенных препятствовать сцеплению бетона с материалом формы. Смазка должна хорошо удерживаться на поверхности формы в процессе всех технологических операций, обеспечивать возможность ее механизированного нанесения (распылением), полностью исключать сцепление бетона изделия с формой и не портить внешнего вида изделий. Этим требованиям в значительной степени удовлетворяют смазочные материалы следующих составов масляные эмульсии с добавкой кальцинированной соды;масляные смазки — смесь солярового (75%) и веретенного (25%) масел или 50% машинного масла и 50% керосина;мыльно-глиняные, мыльно-цементные и другие водные суспензии тонкодисперсных материалов, например мела, графита.

4. ТВЕРДЕНИЕ ЖЕЛЕЗОБЕТОННЫХ ИЗДЕЛИЙ

Твердение отформованных изделий — заключительная операция технологии сборного железобетона, когда изделия приобретают требуемую прочность.В зависимости от температуры среды различают следующие три принципиально различных режима твердения изделий:

-нормальный — температура 15—20° С;

-тепловая обработка при температуре до 100° С при нормальном давлении;

-автоклавная обработка — пропариваиие при повышенном давлении пара и температуре среды выше 100° С.

Нормальные условия твердения достигаются в естественных условиях без использования каких-либо тепловых аппаратов и затрат тепла. Это важнейшее технико-экономическое преимущество естественного способа твердения, отличающегося простотой в организации и минимальными капитальными затратами. В то же время способ экономически оправдан может быть только в исключительных случаях. В естественных условиях изделия достигают отпускной 70%-ной марочной прочности в течение 7—10 сут., тогда как при искусственном твердении (пропарива-нии или автоклавной обработке) эта прочность достигается в 15—20 раз быстрее — за 10—16 ч. Соответственно снижается потребность в производственных площадях, объеме парка форм, сокращается продолжительность оборачиваемости средств. Это и является причиной применения на большинстве заводов искусственного твердения.

Тепловая обработка при нормальном давлении. Различают несколько способов тепловой обработки железобетонных изделий при нормальном давлении: пропаривание в камерах, электропрогрев, контактный обогрев, выдержка в теплобассейнах (в горячей воде). Технико-экономическое преимущество пока еще остается за пропариванием в камерах, и этот способ применяется на подавляющем большинстве предприятий сборного железобетона.

Пропаривание осуществляют в камерах периодического и непрерывного действия. В последних свежесформованные изделия непрерывно поступают на вагонетках, и также непрерывно с противоположного конца туннеля камеры выходят готовые изделия. В процессе твердения изделия в камере проходят зоны подогрева, изотермического прогрева (с постоянной максимальной температурой пропаривания) и охлаждения. В принципе камеры непрерывного действия, как и вообще всякое непрерывно действующее оборудование, обеспечивают наиболее высокий съем продукции с единицы объема. Однако в данном случае необходимость применения вагонеток и механизмов для перемещения изделия, а также ряд конструктивных сложностей и неполадок в теплотехническом отношении туннельных камер не позволяют широко применять этот вид пропарочных камер. Применяются они только при конвейерном способе производства и вряд ли получат дальнейшее развитие. Перспективными являются вертикальные камеры непрерывного действия.

5. ОТДЕЛКА ПОВЕРХНОСТИ ЖЕЛЕЗОБЕТОННЫХ ИЗДЕЛИЙ

Способ отделки поверхностей железобетонных изделий надо выбирать с учетом целого ряда требований, которые могут быть продиктованы климатическими, архитектурными и другими условиями его службы. Отделка должна быть долговечной и защищать бетон изделия от атмосферных и агрессивных воздействий, а также отвечать архитектурно-декоративным требованиям.

В настоящее время поверхности можно отделывать с использованием окрасочных составов, облицовочных материалов и цветных бетонов. Окрасочные составы должны быть водостойкими, долговечными и устойчивыми против выцветания. Это силикатные, цементные и полимерные краски. Силикатные краски приготовляют из жидкого стекла, минеральных красящих веществ (пигментов) и наполнителей, цементные краски — из белого цемента с минеральными красящими веществами, перхлорвиниловые (полимерные) краски — из минеральных красящих веществ, разбавленных перхлорвиниловьш лаком. Краски на поверхность железобетонных изделий наносят пистолетом-распылителем за 2 или 3 приема, в зависимости от цвета используемого красящего вещества и консистенции раствора. Окрашивать поверхности надо при положительных температурах.

6. ПРИЕМКА И ИСПЫТАНИЕ ЖЕЛЕЗОБЕТОННЫХ ИЗДЕЛИЙ

Железобетонные изделия принимают партиями, состоящими из однотипных изделий, изготовленных по одной технологии в течение не более 10 сут.

В процессе приемки наружным осмотром проверяют внешний вид изделий, отмечают наличие трещин, раковин и других дефектов. Затем с помощью измерительных линеек и шаблонов проверяют правильность формы и габаритные размеры изделий. Если при контрольных замерах изделия обнаруживаются отклонения по длине или ширине, превышающие допускаемые, изделие бракуется.

При приемке изделий определяется и прочность бетона, которая устанавливается по результатам испытания контрольных образцов и готовых изделий. Контрольные образцы с ребром 10, 15 и 20 см должны изготовляться в металлических разъемных формах в количестве не менее 3 шт. не реже 1 раза в смену, а также для каждого нового состава бетонной смеси.

К физическим методам относятся ультразвуковые и радиометрические. Механические методы базируются на определении величины упругой или пластической деформации. Приборы для этих методов подразделяются на приборы, основанные на принципе упругого отскока, и приборы, основанные на принципе внедрения наконечника в бетон. В первом случае прочность бетона оценивается по величине упругого отскока бойка от поверхности бетона, во втором характеризуется величиной отпечатка на поверхности бетона. Приборы этой группы получили широкое применение в строительстве.

 

Вопрос 31

Легкие бетоны находят в строительстве возрастающее применение. Конструкции из легких бетонов позволяют улучшить теплотехнические и акустические свойства зданий, значительно снизить их массу, успешно решить проблему объемного и многоэтажного строительства, а также строительства в сейсмических районах страны. Применение легких бетонов позволяет уменьшить стоимость строительства на 10...20%, снизить трудовые затраты на стройках до 50%, увеличить производительность труда на 20%. Развитие производства бетонов с применением пористых заполнителей характерно как для нашей страны, так и зарубежного строительства. Но в нашей стране наиболее широко используемым заполнителем является керамзит, а также аглопорит, перлит и др. Керамзитовый гравий составляет до 80% общего объема современного производства искусственных пористых заполнителей. За рубежом более типичным легким заполнителем является термозит (шлаковая пемза).

Бетоны называются легкими, если в сухом состоянии их средняя плотность не выше 2000 кг/м3. Снижения их массы достигают в основном за счет облегчения заполнителя, иногда еще путем поризации вяжущей части.

В зависимости от назначения и технических свойств легкие бетоны разделяют на конструкционные, применяемые для несущих конструкций (стены, перекрытия, и др.); теплоизоляционные, применяемые для ограждающих слоистых конструкций как утеплитель и разного рода теплоизоляции, звукопоглощения; конструкционно-теплоизоляционные. Конструкционные легкие бетоны марок 150...400 получают на основе портландцемента марок 300...600 с применением керамзитового гравия (керамзитобетоны), аглопоритового щебня (аглопоритобетоны) или шлаковой пемзы (шлакобетоны). В качестве мелкого заполнителя применяют природный песок, но может быть использован и дробленый песок. Средняя плотность этих бетонов с применением кварцевого песка составляет 1600... 1800 кг/м3, что значительно меньше, чем при применении плотного заполнителя для получения тяжелого бетона той же прочности. Эффективность легкого бетона в данном случае особенно наглядна при сравнении их по коэффициентам конструктивного качества. Этот коэффициент, обозначаемый ККК, равен отношению предела прочности бетона при сжатии к его средней плотности. При равной прочности у легкого конструктивного бетона в среднем он выше в 2400/1700 = 1,4 раза, поэтому легкие бетоны целесообразнее применять, чем тяжелые одинаковой прочности, в междуэтажных перекрытиях отапливаемых зданий, в проезжей части мостов, в железобетонных конструкциях с обычной и предварительно напряженной арматурой (балки, прогоны, лестничные марши и площадки и т. п.). Широкому применению конструктивных легких бетонов в наружных конструкциях способствует высокая морозостойкость (Мрз35 и выше), а при использовании для гидротехнических сооружений их морозостойкость увеличивают до 300 и выше, что достигается введением некоторых добавочных веществ.

Теплоизоляционные легкие бетоны имеют невысокую среднюю плотность — ниже 500 кг/м3 и обладают также хорошими теплозащитными свойствами, так как в сухом состоянии их теплопроводность находится ниже 0,20 Вт/(м-К). Положительные свойства теплоизоляционных легких бетонов позволяют использовать их в конструкциях как достаточно надежную теплоизоляцию.

Так как цементный камень значительно утяжеляет бетон, то его содержание стремятся довести до минимума, а макроструктуру приблизить к контактной при данной технологии его формирования. В связи с этим для легких бетонов используется заполнитель пористый, особенно тот, который сохраняет прочность на достаточном уровне. Наиболее часто в легких бетонах применяют в виде щебня, гравия и песка из природных заполнителей пемзу, вулканический туф, ракушечник, известковый туф и др., а из искусственных — шлаковую пемзу (термозит), керамзит.

Прочность этих зернистых заполнителей обычно оценивается по величине напряжения при раздавливании их в металлических цилиндрах, и она колеблется в пределе от 0,4 до 20 МПа. В легком бетоне может быть использован не только минеральный, но и органический заполнитель — древесная дробленка, одубина, костра, гранулированный пенополистирол и т. п. Размер зерен заполнителя равен от 1,25 до 40 мм. Получаемая разновидность легкого «деревобетона» именуется арболитом; используется как стеновой материал в жилищном строительстве. Вяжущим веществом в легких бетонах служат обычный или быстротвердеющий портландцемент, а в отдельных случаях шлакопортландцементы. Арболит иногда изготовляют и на основе высокопрочного гипса, но чаще — портландцемента.

Подбор состава и приготовление, укладка и уплотнение бетонной смеси, уход за бетоном, например, в покрытиях, не отличается от тех же операций, принятых в технологии тяжелых бетонов.

Как отмечалось выше, наибольшее применение у нас в стране получили легкие бетоны с применением в них керамзита, т. е. керамзитобетон, реже — аглопоритобетон, шунгизитобетон и др. Нередко вносят в бетон примесь еще более легких заполнителей, например перлита в виде песка. Так, известную распространенность получил поризованный керамзитобетон с вспученным перлитовым песком. Независимо от разновидности заполняющей части на легкие бетоны полностью распространяются общие закономерности оптимальных структур. Среди разновидностей легких бетонов — крупнопористый и поризованный бетоны. Крупнопористый, или беспесчаный, бетон относится к экономичным и эффективным. Для его производства требуется сравнительно небольшие капиталовложения, небольшой расход цемента и в основном местные заполнители. Этот бетон легкий и малотеплопроводный, что снижает расход топлива на отопление помещений в зданиях. Он не содержит песка, что обусловливает его крупнопористое строение.

К качестве заполнителя в крупнопористых бетонах используется щебень или гравий размером от 5 до 40 мм, которые могут быть плотными или пористыми, например керамзит, кирпичный бой и др. Как отмечено, в этом бетоне ограниченное содержание портландцемента, что приводит к получению бетона сравнительно невысоких классов В1, В2, В2,5, В3,5, В5 и В7,5. При введении пластифицирующих добавок возможно еще большее снижение расхода цемента — 80... 100 и ниже. Крупнопористый бетон используется как стеновой материал отапливаемых зданий высотой до четырех этажей, которые подвергают двустороннему оштукатуриванию, чтобы исключить продуваемость стен.

Другой разновидностью легкого бетона, как отмечалось выше, является поризованный, который отличается тем, что в нем имеется не только легкий заполнитель, но и специально поризованный цементный камень. Последнее достигается введением поризующих веществ (пены), причем замкнутые поры заполняются воздухом. Поризованный бетон изготовляют из цемента, минерального порошка (природного шлака тонкомолотого гранулированного, горелых пород и т. п.) путем смешивания их с предварительно подготовленной вспененной массы из воды и пенообразователя, например смолосапонинового, получаемого из мыльного корня. Состав такой массы устанавливается в лаборатории с помощью общего метода проектирования оптимальных составов ИСК. Эта разновидность бетона обладает улучшенными теплотехническими свойствами и поэтому применяется как теплоизоляционный или конструктивно-теплоизоляционный материал в стеновых ограждающих конструкциях. Следует, однако, отметить, что при изготовлении он требует дополнительных трудозатрат и поэтому применяется сравнительно редко.

Ячеистые бетоны как разновидность легких бетонов используются гораздо чаще крупнопористых и поризованных. Они имеют своеобразную ячеистую — структуру макропор, равномерно распределенных в объеме бетона и разделенных друг от друга тонкими и достаточно прочными перегородками (мембранами).

У ячеистых, как и у поризованных, бетонов цементный камень в результате добавления в свежеизготовляемую массу добавки — порообразователя оказывается насыщенным порами, в основном замкнутами, ячеистыми. В отличие от поризованных производство ячеистых бетонов сопровождается более выраженным эффектом вспучивания исходной смеси.

Вспучивание любого вяжущего вещества, как неорганического, так и органического, чаще всего достигается под влиянием вводимых в смесь добавочных реагентов. В результате взаимодействия реагирующих веществ в смеси выделяется газ, например водород или кислород. Кроме химических методов поризация со вспучиванием может проходить механическим путем за счет образования в смеси устойчивой пены. В связи с этим ячеистые бетоны разделяют на газобетоны и пенобетоны.

Вместо портландцемента в ячеистом бетоне нередко используют известь и тогда бетон именуют газосиликатом. Применяются шлаковые вяжущие с получением газошлакобетона, гипс с получением газогипса, смешанные вяжущие типа.

Пенобетон и пеносиликат получают с применением пенообразователей — смолосапонинового, клееканифольного, ГК, алюмосуль-фонафтенового и др. При проектировании составов газо- и пенобетонов, газо- и пеносиликатов исходят из необходимости получения заданных пределов средней плотности и прочности с соблюдением наименьшего расхода вяжущего и порообразующего веществ. Учитываются также требования в отношении морозостойкости бетона и технологичности бетонной смеси. Рекомендуются различные методы подбора состава ячеистых бетонов, которые позволяют получать необходимые числовые показатели основных свойств, однако более целесообразно и в данном случае пользоваться общим методом проектирования оптимальных составов ИСК. Он позволяет получать не только наиболее экономичные бетоны по своему рациональному составу но и с комплексом наилучших показателей строительно-технологических и эксплуатационных свойств (закон створа).

 

Вопрос 32

Силикатные материалы и изделия автоклавного твердения представляют собой искусственные строительные конгломераты на основе известково-кремнеземистого вяжущего, получаемого в процессе автоклавной обработки под действием пара при высокой температуре и повышенном давлении. Одним из основных компонентов сырьевой смеси, из которой формуются изделия, служит известь, которая обладает большой химической активностью к кремнезему при термовлажностной обработке. Именно поэтому вторым основным компонентом сырьевой смеси является кварцевый песок или другие минеральные вещества, содержащие кремнезем, например шлаки, золы ТЭЦ и др. Чтобы химическое взаимодействие проходило достаточно интенсивно, кремнеземистый компонент подвергают тонкому измельчению. Чем более тонким измельчение песка, тем выше должно быть относительное содержание извести в смеси. В качестве других компонентов могут быть также введены заполнители в виде немолотого кварцевого песка, шлака, керамзита, вспученного перлита и т. п. Непременным компонентом во всех смесях выступает вода.

К числу автоклавных силикатных изделий относят силикатный кирпич, крупные силикатные блоки, плиты из тяжелого силикатного бетона, панели перекрытий и стеновые, колонны, балки и пр. Легкие заполнители позволяют понизить массу стеновых панелей и других элементов. Силикатные изделия выпускают полнотелыми или облегченным со сквозными или полузамкнутыми пустотами. Особое значение имеют силикатные ячеистые бетоны, заполненные равномерно распределенными воздушными ячейками, или пузырьками. Они могут иметь конструктивное и теплоизоляционное назначение, что обусловливает форму и размеры изделий, их качественные показатели.

Изделия приобретают свойства, необходимые для строительных материалов, после автоклавной обработки, в процессе которой образуется новый известково-кремнеземистый цемент с характерными для него новообразованиями гидросиликатов кальция и магния, а также безводных силикатов.

 

Вопрос 33

Строительными растворами называют разновидность ИСК, получаемую при отвердении рационально подобранной и тщательно перемешанной смеси, состоящей в основном из вяжущего вещества, воды и мелких заполнителей (песка). Отсутствие крупного заполнителя придает строительным растворам некоторые специфические особенности по сравнению с бетонами, например повышенную пластичность.Строительные растворы применяются для связывания в монолит кирпичной, каменной кладки или крупных изделий, например панелей, блоков и других при строительстве сборных жилых и промышленных зданий. Растворы используют также при декоративной отделке стен и потолков, для устройства полов, изготовления тонкостенных конструкций, для выполнения штукатурных работ.Основная особенность употребления строительных растворов заключается в том, что их укладывают по пористому основанию — кирпичу, бетону, пористому камню — сравнительно тонкими слоями без специального, как правило, механического уплотнения. Однако при повышенной жесткости растворной смеси нередко используется уплотнение, например, вибрационное.

Строительные растворы имеют различное функциональное назначение и по этому признаку их классифицируют на кладочные, штукатурные, монтажные и специальные, к которым относятся акустические, тампонажные, гидроизоляционные, рентгенозащитные.

По виду используемых мелкозернистых заполнителей выделяют строительные растворы тяжелые и легкие. Средняя плотность тяжелых— свыше 1500, а легких строительных растворов — менее 1500 кг/м3.

По виду вяжущего вещества строительные растворы различают: цементные, приготовляемые с применением портландцемента или его разновидностей; известковые — на основе извести воздушной или гидравлической; гипсовые с применением в них строительного или высокопрочного гипса; смешанные, получаемые на основе двух или нескольких вяжущих, чаще всего цемента и извести, реже — цемента и глины. В этих растворах известь и глина, а иногда и некоторые другие тонкодисперсные и тонкомолотые добавки (шлаки, золы и др.) играют роль твердых пластификаторов, поскольку они обладают большой водоудерживающей способностью. Их присутствие предотвращает интенсивный отсос воды из раствора в пористый кирпич, бутовый камень или бетон при кладке и монтаже сборного объекта.

Заполнителем в растворе служит природный песок обычный (речной, горный и др.) или искусственный пониженного веса— керамзитовый, термозитовый, из вспученного перлита или вермикулита, пемзы и туфа. Природные пески по загрязненности посторонними примесями не должны отличаться от песков для цементных бетонов. По гранулометрическому составу песок назначают с наибольшей плотностью, с тем чтобы понизить расход вяжущего вещества. Не допускаются зерна крупнее 10 мм, а размером от 5 до 10 мм количество зерен ограничивается пределом не более 5% по массе.

В низкомарочных растворах допускается содержание в песке пылевато-глинистых примесей до 10, реже — до 15...20% при условии обязательного увеличения продолжительности перемешивания раствора при его изготовлении. В качестве ускорителя твердения строительных растворов используется, так же как в бетонах, хлористый кальций.

Для кладочных, облицовочных и штукатурных растворов применяют цементы, получаемые путем совместного помола портландцементного клинкера с добавками гипса, кремнеземистых, мрамора, пыли электрофильтров клинкерообжигательных печей и др. По содержанию клинкера в таких цементах должно быть не менее 20%. Допускаются пластифицирующие, гидрофобизирующие воздухововлекающие добавки. Марки цементов — не менее 200, тонкость помола — через сито № 008 должно проходить не менее 88% от взятой навески, водоотделение цементного теста при В/Ц =1,0 — не более 30% по объему. Цемент должен выдерживать испытание на равномерность изменения объема.

Для строительных растворов специального назначения — декоративных, кислотостойких, рентгенозащитных, тампонажных и других штукатурок — с особой тщательностью выбирается разновидность вяжущего, добавок и химически стойких заполнителей. Оптимизировать структуру растворов с учетом их конкретного назначения, обеспечивая пористость акустических растворов, высокую плотность кислото- и щелочестойких растворов, гидрофобность при гидроизоляции.

Технология изготовления строительного раствора на специализированных заводах или отдельных растворных узлах слагается из ряда взаимосвязанных операций: подготовки исходных материалов— просеивания природного песка, домола при необходимости и рассева искусственного песка; дозирования материалов по массе; перемешивания отвешенных компонентов до однородного состояния растворной смеси в стационарных или передвижных растворомешалках разной емкости. Продолжительность перемешивания обусловлена видом исходных материалов, но обычно составляет не менее 1... 1,5 мин, а при содержании в смеси высокодисперсных добавок — до 3...4 мин. Транспортирование готовой растворной смеси осуществляется с помощью специально оборудованных автоцистерн и самосвалов. Возможно изготовление на заводе сухой смеси, с тем чтобы в пути следования к объекту строительства произвести объединение ее с водой в мешалках со свободным перемешиванием, размещаемых на к узове автомобиля (автосмесителя).

Удобоукладываемость — это способность растворной смеси равномерно укладываться по пористому основанию (кирпичу, бетону, природному камню и др.) тон



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-11-19 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: