Методы повышения точности измерений и средств измерений




 

Повышение точности измерений – актуальная задача практически любых измерительных экспериментов. Для технологических измерений повышение точности измерений в настоящее время особенно важно в связи с переходом к широкому применению АСУ ТП, решающих задачи оптимизации технологических процессов. Задача повышения точности измерений неразрывно связана с задачей повышения точности измерительных устройств.

Для решения этих задач применяются различные методы [30, 31], сущность которых кратко изложена далее. В силу того, что в настоящее время отсутствуют общепринятая классификация методов повышения точности измерений и средств измерений, а также общая терминология, в книге используются классификация и терминология, приведенные на рис. 3.5 и 3.6.

В § 1.4 дан анализ причин возникновения случайной и систематической составляющих погрешностей измерения. Принципиальное различие в причинах их возникновения и проявления определяет специфику методов уменьшения этих погрешностей.

Методы уменьшения случайной погрешности измерений. Для уменьшения случайной составляющей погрешности измерений увеличивают число наблюдений (см. рис. 3.5). Действительно, если следовать зависимости (3.5), то оценку среднеквадратического отклонения результата измерения, которая определяет собой случайную погрешность, теоретически можно сделать как угодно малой, увеличив число наблюдений n. Однако на практике в большинстве случаев трудно обеспечить постоянство самого объекта измерений в течение длительного времени, а это может при увеличении числа наблюдений n привести к увеличению погрешности, а не к ее уменьшению.

Другим методом повышения точности измерений за счет уменьшения случайной составляющей погрешности (см. рис. 3.5) является использование параллельных одновременных измерений одной и той же физической величины. Для этого необходимо использовать сразу несколько средств измерений. Результаты наблюдений, полученных при этих измерениях, обрабатывают совместно. Теоретическая основа этого метода та же, что и предыдущего метода.

Методы уменьшения (исключения) систематической погрешности. В §3.3 были рассмотрены основные методы обнаружения и исключения систематической погрешности, а именно: методы, основывающиеся на устранении источников систематической погрешности до начала измерений и методы исключения систематических погрешностей по окончании измерений. К числу последних относятся не только применение поправок и поправочных множителей, но и учет дополнительных погрешностей средств измерений.

Кроме этих методов применяются методы, позволяющие определять и исключать систематическую погрешность в процессе измерений. Последние основываются на такой организации процесса измерений и обработки получаемой измерительной информации, которые обеспечивают исключение погрешности или ее определение. Причем применение таких методов возможно и целесообразно в тех случаях, когда известна природа исключаемой систематической погрешности. К числу этих методов относятся: метод замещения, рассмотренный в § 1.3, метод компенсации погрешности по знаку и различные методы, базирующиеся на совместных или совокупных измерениях.

При использовании метода компенсации погрешности по знаку процесс измерения организуется таким образом, что известная систематическая погрешность входит в результат каждого из двух повторных измерений с противоположным знаком. Это позволяет после определения среднего арифметического значения исключить систематическую погрешность.

Сущность методов, базирующихся на совместных или совокупных измерениях применительно к уменьшению систематических погрешностей, состоит в том, что в процессе этих измерений изменяют параметр, отвечающий за возникновение систематической погрешности, или осуществляют измерение физической величины совместно и последовательно с несколькими вспомогательными мерами. В результате получают систему независимых уравнений, из решения которой определяют значения измеряемой физической величины уже с учетом систематической погрешности.

Одним из наиболее радикальных путей повышения точности измерений при прочих равных условиях является использование более точных средств измерений. Появление и развитие микроэлектронной техники и микропроцессоров, обеспечивающие возможность практически полной автоматизации самых сложных измерительных процессов, позволили использовать для увеличения точности средств измерений рассмотренные выше методы повышения точности измерений. Наряду с этими методами для повышения точности средств измерений применяется ряд традиционных методов.

При кратком рассмотрении методов повышения точности средств измерений будем следовать классификации, приведенной на рис. 3.6.

Метод многократных наблюдений используется для уменьшения случайной составляющей погрешности средства измерений и состоит в том, что: за некоторый постоянный интервал времени, отведенный для измерения, выполняют несколько наблюдений, затем с помощью вычислительного устройства, входящего в состав данного средства измерений, вычисляют среднее арифметическое значение измеряемой величины и оценку среднеквадратического отклонения результата измерения.

Метод многоканальных измерений аналогичен рассмотренному методу параллельных измерений (см. рис. 3.5). Средства измерений, с помощью которых реализуется данный метод, содержат несколько идентичных по характеристикам параллельных измерительных цепей и вычислительное устройство. Последнее, получая измерительную информацию по этим каналам, вычисляет среднее арифметическое значение измеряемой величины и оценку среднеквадратического отклонения результата измерения. Такой метод позволяет уменьшить случайную составляющую погрешности средства измерений.

Метод параметрической стабилизации, называемый еще конструктивно-технологическим, состоит в стабилизации статической характеристики средств измерений. Параметрическая стабилизация реализуется путем изготовления средств измерений из точных и стабильных элементов, параметры которых мало подвержены внешним влияниям; гермостабилизации; стабилизации параметров питания средств измерений; экранировки средств измерений от магнитных и электрических полей. Данный метод уменьшает систематическую и случайную погрешности средств измерений. Он является классическим в приборостроении. На основе этого метода до сих пор строится современный парк средств измерений.

Структурные методы основаны на том, что в состав средств измерений включаются дополнительные узлы, элементы и меры, обеспечивающие повышение точности этих средств измерений за счет информации, полученной с их помощью. Структурные методы повышения точности средств измерений подразделяют на методы, обеспечивающие стабилизацию статической характеристики средства измерений, и методы, основанные на коррекции этой характеристики.

Структурные методы стабилизации статической характеристики средств измерений (см. рис. 3.6).

Метод отрицательной обратной связи реализуем только при наличии преобразовательных элементов или преобразователей, способных осуществлять преобразование выходного сигнала средства измерений во входной (обратный преобразователь). Создание таких преобразователей – часто сложная техническая задача. Сущность этого метода подробно рассмотрена в § 2.2 (см. рис. 2.2). Применение данного метода обеспечивает уменьшение мультипликативной погрешности и погрешности нелинейности, а относительная аддитивная погрешность при этом не изменяется. В то же время использование метода приводит к уменьшению чувствительности средства измерения. Данный метод повышает точность средства измерения и наряду с методом параметрической стабилизации является наиболее распространенным.

Метод инвариантности состоит в том, что в средстве измерений помимо измерительной цепи имеется сравнительная цепь, к которой не подается входной сигнал, но которая, как и измерительная цепь, находится под воздействием некоторой влияющей величины. Причем параметры сравнительной цепи подобраны так, что изменение ее сигнала под действием влияющей величины идентично изменению сигнала измерительной цепи под действием этой величины, т.е. возмущения, вызванные влияющей величиной, поступают в средство измерений по двум каналам. Использование разности сигналов измерительной и сравнительной цепей обеспечивает независимость результирующего сигнала от названной влияющей величины, т.е. метод обеспечивает исключение дополнительной погрешности, вызванной изменениями некоторой, как правило, основной влияющей величины. Данный метод широко используется в аналитическом приборостроении.

Метод модуляции состоит в том, что сигнал, поступающий на вход средства измерений, или параметры этого средства измерений подвергаются принудительным периодическим изменениям с частотой, не совпадающей с областью частот измеряемого сигнала. Использование метода модуляции позволяет уменьшить погрешности от сил трения, явлений поляризации и гистерезиса.

Метод прямого хода состоит в том, что измеряемый сигнал поступает к чувствительному элементу средства измерений через ключ, с помощью которого осуществляется периодическое во времени отклонение измеряемого сигнала от чувствительного элемента и подача к последнему сигнала, что исключает наиболее существенную погрешность многих средств измерений – погрешность от вариации.

Структурные методы коррекции статической характеристики. Перечень их приведен на рис. 3.6.

Метод вспомогательных измерений заключается в автоматизации процесса учета дополнительной погрешности средства измерений по известным функциям влияния ряда влияющих величин. Для этого осуществляется измерение значений этих величин и с помощью вычислительного устройства автоматически корректируется выходной сигнал средства измерений.

Метод обратного преобразования (итерационный метод) [30,31] базируется на использовании дополнительно в составе средства измерений кроме прямой измерительной цепи, способной осуществлять обратное преобразование выходного сигнала, имеющей существенно большую точность, чем цепь прямого преобразования. Результат измерения получают путем итераций. В процессе каждой итерации последовательно осуществляются: прямое преобразование сигнала обратного преобразователя, соответствующего запомненному значению измеряемой величины, и сравнение результатов этих двух преобразований, на основе которого формируется корректирующийся сигнал. Метод обратного преобразователя позволяет уменьшать в зависимости от используемого алгоритма коррекции аддитивную и мультипликативную погрешности средств измерений.

Метод образцовых сигналов (образцовых мер) [30,31] состоит в определении в каждом цикле измерения реальной функции преобразования средства измерений с помощью образцовых сигналов, т.е. метод состоит в автоматической градуировке средства измерений в каждом цикле. Цикл включает в себя измерение физической величины, поступающей на вход средства измерений, и решение системы уравнений с помощью вычислительного устройства, из которого определяется значение измеряемой величины. В этом решении уже учтены изменения реальной статической характеристики, т.е. данный метод сводится к совокупному измерению. Он позволяет уменьшить аддитивную и мультипликативную погрешность, а также погрешность нелинейности.

Тестовый метод [31]сводится к проведению совокупных измерений. В отличие от метода образцовых сигналов в тестовом методе в каждом цикле работы средства измерений кроме измерения физической величины, поступающей на вход средства измерений, осуществляют измерение величин-тестов, каждая из которых формируется из меры и измеряемой величины. Значение измеряемой величины определяется из системы уравнений, решаемой с помощью вычислительного устройства. По существу данный метод является развитием метода образцовых сигналов.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: