Фундаментальные свойства живого.




К числу фундаментальных свойств, совокупность которых характеризует жизнь, относятся: самообновление, свя­занное с потоком вещества и энергии; самовоспроизведение, обеспечивающее преемственность между сменяющими друг друга генерациями биологиче­ских систем, связанное с потоком ин­формации; саморегуляция, базирующая­ся на потоке вещества, энергии и ин­формации.

Перечисленные фундаментальные свойства обусловливают основные ат­рибуты жизни: обмен веществ и энер­гии, раздражимость, гомеостаз, ре­продукцию, наследственность, измен­чивость, индивидуальное и филогенети­ческое развитие, дискретность и целост­ность.

Обмен веществ и энергии. Ха­рактеризуя явления жизни, Ф. Эн­гельс в работе «Диалектика природы» писал: «Жизнь — это способ существо­вания белковых тел, существенным мо­ментом которого является постоянный обмен веществ с окружающей их внеш­ней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка». При этом Ф. Энгельс отмечал, что обмен веществ может иметь место и между телами неживой природы. Однако прин­ципиально обмен веществ как свойство живого качественно отличается от об­менных процессов в неживых телах. Для того чтобы показать эти отличия, рассмотрим ряд примеров.

Горящий кусок угля находится в состоянии обмена с окружающей при­родой, происходит включение кисло­рода в химическую реакцию и выделе­ние углекислого газа. Образование ржавчины на поверхности железного предмета является следствием обмена со средой. Но в результате этих про­цессов неживые тела перестают быть тем, чем они были. Наоборот, для тел живой природы обмен с окружающей средой является условием существова­ния. В живых организмах обмен ве­ществ приводит к восстановлению раз­рушенных компонентов, заменяя их новыми, подобными им, т. е. к само­обновлению и самовоспроизведению, или построению тела живого организ­ма за счет усвоения веществ из окру­жающей среды.

Из сказанного следует, что организ­мы существуют как открытые системы. Через каждый организм идет непре­рывно поток вещества и поток энер­гии. Осуществление этих процессов обусловлено свойствами белков, осо­бенно их каталитической активностью. При этом несмотря на непрерывное обновление вещества, структуры в жи­вом сохраняются, точнее, непрерывно воспроизводятся, что связано с инфор­мацией, заложенной в нуклеиновых кис­лотах. Нуклеиновые кислоты облада­ют свойством хранить и воспроизво­дить наследственную информацию, а также реализовывать ее через синтез белков. Благодаря тому, что организ­мы— открытые системы, они находятся в единстве со средой, а физические, химические и биологические свойства окружающей среды обусловливают осуществление всех процессов жиз­недеятельности.

Раздражимость. Эта неотъемле­мая черта, свойственная всему живому, является выражением одного из общих свойств всех тел природы — свойства отражения. Она связана с передачей информации из внешней среды любой биологической системе (организм, ор­ган, клетка) и проявляется реакциями этих систем на внешнее воздействие. Благодаря этому свойству достигается уравновешивание организмов с внеш­ней средой: организмы избирательно реагируют на условия окружающей среды, способны извлекать из нее все необходимое для своего существования, а следовательно, с ними связан столь характерный для живых организмов обмен веществ, энергии и информации. Свойство раздражимости связано с хи­мическим строением самого субстрата жизни.

Получение необходимой информации обеспечивает в биологических систе­мах саморегуляцию, которая осуществ­ляется по принципу обратной связи. Продукты жизнедеятельности могут оказывать сильное и строго специфическое тормозящее воздействие на те ферменты, которые составляют началь­ное звено в длинной цепи реакций. По принципу обратной связи регулиру­ются процессы обмена веществ, репро­дукции, считывания наследственной информации, а следовательно, про­явление наследственных свойств в ин­дивидуальном развитии и т. д.

Саморегуляцией в организмах под­держивается постоянство структурной организации—гомеостаз. Организмам свой­ственно постоянство химического со­става, физико-химических особенно­стей. Для всех живых существ харак­терно наличие механизмов, поддержи­вающих постоянство внутренней среды. Структурная организация в широ­ком смысле, т. е. определенная упоря­доченность, обнаруживается не только при исследовании жизнедеятельности отдельных организмов. Организмы раз­личных видов, связанные друг с дру­гом средой обитания, составляют био­ценозы (исторически сложившиеся со­общества). В биоценозах в результате обмена веществ, энергии и информации между организмами и окружающей их неживой природой также поддержива­ется определенный биоценотический го­меостаз: постоянство видового состава и числа особей каждого вида.

Биологическим системам на различ­ных уровнях организации свойственна адаптация. Под адаптацией понимается при­способление живого к непрерывно ме­няющимся условиям среды. В основе адаптации лежат явления раздражи­мости и характерные для нее адекватные ответные реакции. Адаптации вырабо­тались в процессе эволюции как след­ствие выживания наиболее приспособле-ных. Без адаптации невозможно под­держание нормального существования.

Репродукция. В связи с тем что жизнь существует в виде отдельных (дискретных) биологических систем (клетки, организмы и др.) и существо­вание каждой отдельно взятой биологи­ческой системы ограничено во времени, поддержание жизни на любом уровне связано с репродукцией. Любой вид состоит из особей, каждая из которых рано или поздно перестанет существо­вать, но благодаря репродукции (размножению) жизнь вида не прекраща­ется. Размножение всех видов, населяю­щих Землю, поддерживает существо­вание биосферы. Самовоспроизведение намолекулярном уровне обусловли­вает особенности обмена веществ живых организмов по сравнению с неживыми телами.

 

На молекулярном уровне репродук­ция осуществляется на основе матрич­ного синтеза. Принцип матричного син­теза заключается в том, что новые мо­лекулы синтезируются в соответствии с программой, заложенной в структуре ранее существовавших молекул. Мат­ричный синтез лежит в основе образо­вания молекул белков и нуклеиновых кислот.

Наследственность обеспечивает материальную преемственность (поток информации) между поколениями орга­низмов. Она тесно связана с репродук­цией (авторепродукцией) жизни на мо­лекулярном, субклеточном и клеточ­ном уровнях. Хранение и передача на­следственной информации осуществля­ются нуклеиновыми кислотами. Бла­годаря наследственности из поколения в поколение передаются признаки, обес­печивающие приспособление организ­мов к среде обитания.

Изменчивость — свойство, про­тивоположное наследственности, свя­занное с появлением признаков, отли­чающихся от типичных. Если бы при репродукции всегда проявлялась толь­ко преемственность прежде суще­ствовавших свойств и признаков, то эволюция органического мира была бы невозможна; но живой природе свой­ственна изменчивость. В первую оче­редь, она связана с «ошибками» при репродукции. По-иному построенные молекулы нуклеиновой кислоты несут новую наследственную информацию. Это новая измененная информация в большинстве случаев бывает вред­ной для организма, но в ряде случаев в результате изменчивости организм приобретает новые свойства, полезные в данных условиях. Новые признаки подхватываются и закрепляются отбором. Так создаются новые формы, новые виды. Таким образом, наслед­ственная изменчивость создает предпо­сылки для видообразования и эволю­ции, а тем самым и существования жизни.

Индивидуальное развитие. Ор­ганизмы, появляющиеся в результате репродукции, наследуют не готовые признаки, а определенную генетическую информацию, возможность разви­тия тех или иных признаков. Эта на­следственная информация реализуется во время индивидуального развития. Индивидуальное развитие выражает­ся, как правило, в увеличении массы (рост), что, в свою очередь, базируется на репродукции молекул, клеток и других биологических структур, а так­же в дифференцировке, т. е. появле­нии различий в структуре, усложнении функций и т. д.

Филогенетическое развитие, основные закономерности которого ус­тановлены Ч. Дарвино.м, (1809—1882), базируется на прогрессивном размно­жении, наследственной изменчивости, борьбе за существование и отборе. Действие этих факторов привело к огромному разнообразию форм жизни, приспособленных к различным усло­виям среды обитания. Прогрессивная эволюция прошла ряд ступеней: доклеточных форм, одноклеточных организ­мов, все усложняющихся многоклеточ­ных вплоть до человека. Однако вместе с человеком появилась новая форма су­ществования материи — социальная, высшая по сравнению с биологической и не сводимая к ней. В силу этого чело­век в отличие от всех других существ представляет собой биосоциальный ор­ганизм.

Дискретность и целостность. Жизнь характеризуется диалектиче­ским единством противоположностей: она одновременно целостна и дискретна. Орга­нический мир целостен, существова­ние одних организмов зависит от дру­гих. В очень общей и упрощенной форме это можно представить так. Жи­вотные-хищники для своего питания

 

нуждаются в существовании расти­тельноядных, а последние — в существовании растений. Растения в про­цессе фотосинтеза поглощают из атмо­сферы СО2, выделение которого в ат­мосферу связано с жизнедеятельностью живых организмов. Кроме того, расте­ния из почвы получают ряд минераль­ных веществ, количество которых не истощается благодаря разложению ор­ганических веществ, осуществляемому бактериями, и т. д.

Органический мир целостен, так как составляет систему взаимосвязанных частей, и в то же время дискретен. Он состоит из единиц — организмов, или особей. Каждый живой организм диск­ретен, так как состоит из органов, тка­ней, клеток, но вместе с тем каждый из органов, обладая определенной авто­номностью, действует как часть целого. Каждая клетка состоит из органоидов, но функционирует как единое цел л Наследственная информация осуществ­ляется генами, но ни один из генов вне всей совокупности не определяет разви­тие признака и т. д. Жизнь связана с молекулами белков и нуклеиновых кис­лот, но только их единство, целостная система обусловливает существование живого.

С дискретностью жизни связаны раз­личные уровни организации органиче­ского мира.

Уровня организации живого. В серединеХХ в. в биологии сложились представления об уровнях организа­ции как конкретном выражении упо­рядоченности, являющейся одним из основных свойств живого (биологические микросистемы: мол., субклеточ., клеточ.; биолог.мезосист.:тк., ор., орг.; биол.макросис.: поп.-вид., биоценотич.).

Живое на нашей планете представле­но в виде дискретных единиц — орга­низмов, особей. Каждый организм, с одной стороны, состоит из единиц под­чиненных ему уровней организации (ор­ганов, клеток, молекул), с другой — сам является единицей, входящей в состав надорганизменных биологиче­ских макросистем (популяций, биоце­нозов, биосферы в целом).

На всех уровнях жизни проявляются такие ее атрибуты, как дискретность и целостность, структурная организа­ция (упорядоченность), обмен веществ, энергии и информации и т.д. Характер проявления основных свойств жизни на каждом из уровней имеет качественные особенности, упорядоченность. Как из­вестно, в результате обмена веществ, энергии и информации устанавливает­ся единство живого и среды, но понятие среды для разных уровней различно. Для дискретных единиц молекулярно­го и надмолекулярного (субклеточно­го) уровней окружающей средой явля­ется внутренняя среда клетки; для кле­ток, тканей и органов — внутренняя среда организма. Внешняя живая и неживая среда на этих уровнях орга­низации воспринимается через измене­ние внутренней среды, т. е. опосредо­ванно. Для организмов (индивидуумов) и их сообществ среду составляют орга­низмы того же и других видов и условия неживой природы.

Существование жизни на всех уров­нях подготавливается и определяется структурой низшего уровня. Характер клеточного уровня организации опреде­ляется молекулярным и субклеточным уровнями, организменный— клеточ­ным, тканевым, органным, видовой (популяционный) — организменным и т. д. Следует отметить большое сходство дискретных единиц на низших уров­нях и все возрастающее различие на высших уровнях.

Молекулярный уровень. На молекулярном уровне обнаружива­ется удивительное однообразие диск­ретных единиц. Жизненный субстрат для всех животных, растений, вирусов составляет всего 20 одних н тех же ами­нокислот и 4 одинаковых азотистых основания, входящих в состав молекул нуклеиновых кислот. Близкий со­став имеют липиды и углеводы. У всех организмов биологическая энергия за­пасается в виде богатых энергией аденозинфосфорных кислот (АТФ, АДФ, АМФ). Наследственная информация у всех заложена в молекулах ДНК (ис­ключение составляют лишь РНК-содержащие вирусы), способной к саморепро­дукции. Реализация наследственной информации осуществляется при уча­стии молекул РНК, синтезируемых на матричных молекулах ДНК. В связи с тем, что с молекулярными структурами связано хранение, изменение и реали­зация наследственной информации, этот уровень иногда называют молекулярно-генетическим.

Клеточный уровень. На клеточном уровне также отмечается однотипность всех живых организмов. Клетка является основной самостоятель­но функционирующей элементарной биологической единицей, характерной для всех живых организмов. У всех организмов только на клеточном уров-не возможны биосинтез и реализация наследственной информации. Клеточ­ный уровень у одноклеточных организ­мов совпадает с организменным. В ис­тории жизни на нашей планете был такой период (первая половина архейской эры), когда все организмы находились на этом уровне организации. Из таких организмов состояли все виды, биоце­нозы и биосфера в целом.

Тканевый уровень. Сово­купность клеток с одинаковым типом ор­ганизации составляет ткань. Тканевый уровень возник вместе споявлением многоклеточных животных и расте­ний, имеющих дифференцированные ткани. У многоклеточных организмов он развивается в период онтогенеза. Большое сходство между всеми орга­низмами сохраняется на тканевом уров­не. Совместно функционирующие клет­ки, относящиеся к разным тканям, со­ставляют органы. Всего лишь 5 основ­ных тканей входят в состав органов всех многоклеточных животных и 6 ос­новных тканей образуют органы рас­тений.

Организменный (онтоге­нетический)уровень. На организменном уровне обнаруживает­ся труднообозримое многообразие форм. Разнообразие организмов, относящих­ся к разным видам, да и в пределах одного вида,— следствие не разнооб­разия дискретных единиц низшего по­рядка, а все усложняющихся их про­странственных комбинаций, обуслов­ливающих новые качественные особен­ности. В настоящее время на Земле обитает более миллиона видов живот­ных и около полумиллиона видов выс­ших растений. Каждый вид состоит из отдельных индивидуумов.

Особь — организм как целое — эле­ментарная единица жизни. Вне особей в природе жизнь не существует. На организменном уровне протекают про­цессы онтогенеза, поэтому уровень этот называют еще онтогенетическим. Нервная и гуморальная системы осу­ществляют саморегуляцию в организ­ме и обусловливают определенный гомеостаз.

Популяционно-видовой уровень. Совокупность организ­мов (особей) одного вида, населяющих определенную территорию, свободно между собой скрещивающихся, состав­ляет популяцию. Популяция — это элементарная единица эволюционного процесса; в ней начинаются процессы видообразования. Популяция входит в состав биогеоценозов.

Биоценотический и биосферный уровни. Биогеоценозы — исторически сложившиеся ус­тойчивые сообщества популяций раз­ных видов, связанных между собой и с окружающей неживой природой обме­ном веществ, энергии и информации. Они являются элементарными систе­мами, в которых осуществляется ве­щественно-энергетический круговорот, обусловленный жизнедеятельностью организмов. Биогеоценозы составля­ют биосферу и обусловливают все процессы, протекающие в ней.

Только при комплексном изучении явлений жизни на всех уровнях можно получать целостное представление об особой (биологической) форме суще­ствования материи.

Представление об уровнях организа­ции жизни имеет непосредственное отношение к основным принципам меди­цины. Оно заставляет смотреть на здо­ровый и больной человеческий орга­низм как на целостную, но в то же вре­мя сложную иерархически соподчинен­ную систему организации. Знание структур и функций на каждом из них помогает вскрыть сущность болезнен­ного процесса. Учет той человеческой популяции, к которой относится данный индивидуум, может потребоваться, на­пример, при диагностике наследствен­ной болезни. Для вскрытия особенно­стей течения заболевания и эпидеми­ческого процесса необходимо также учи­тывать особенности биоценотической и социальной среды. Имеет ли дело врач с отдельным больным или челове­ческим коллективом, он всегда ос­новывается на комплексе знаний, полученных на всех уровнях биоло­гических микро-, мезо- и макросис­тем.

2. Ионизирующая радиация как фактор среды обитания. Виды ионизирующих излучений. Проникающая и

ионизирующая способность ионизирующих излучений. Биологические эффекты ионизирующей радиации.

Радиационный гормезис. Ионизирующие излучения-лишь такие, энергия которых способна вызвать ионизацию. Например, электромагнитное излучение в диапазоне радиоволнили видимого света ионизирующим излучением не является. ТИПЫЯДЕРНЫХ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ:

Альфа (a)-излучение. - испускание ядерных частиц,каждая из которых состоитиз 2 протонов и 2 нейтронов (ядро гелия).Оно возникает при распаде атомных ядер тяжелей свинца(например, урана, тория, радия, плутония), а также во многих ядерных реакциях.Поступление альфа-излучателя внутрь организма может вызватьбиологические поражения его клеток, т.к. альфа-частица несетбольшое количество энергии и ее ионизирующая способность очень велика. Бета (b)-излучение. - испускание электронов и позитронов,движущихся с очень высокими скоростями. Оно возникает в основном врезультате радиоактивного распада. Ионизирующая способность существеннониже, чем у a-излучения. Однако бета-частицы опасны при попадании ина поверхность тела, и внутрь рганизма. Гамма (g)-излучение - самое коротковолновое электромагнитное излучениевысокой энергии и обладает наибольшей проникающей пособностью.Соответственно, защита от внешнего гамма-излучения представляет наибольшие проблемы. Проникающая способность излучения пределяет состав и толщинуэффективнопоглощающего его материала.a-излучение - наименее проникающее.Оно эффективно поглощается слоем воздуха толщиной несколько сантиметров,слоем воды толщиной около 0,1 мм или, например, листом бумаги. b-излучение обладает существенно большей проникающей способностью; чтобы его задержать, нужен, например, слой алюминия толщиной в несколько миллиметров,а пробег b-частиц в биологической ткани достигает нескольких сантиметров.Для g-излучения все эти преграды почти прозрачны. Чтобы его задержать, нужен очень толстый (десятки сантиметров и даже метры) слой вещества, при этом обладающего как можно большим атомным номером (например, свинца). Альфа-излучение

поглощается листомбумаги.Пробег a -частицы ввоздухе 11см.,в мягких тканяхчеловека несколькомикрон. Бета-излучениепоглощаетсяверхней одеждой. b - частицы имеютразную энергию,поэтому пробег их ввеществе не одинаков.В воздухе отнескольких метров досантиметра. Гамма-злучениеослабляется стенамидомов, металлическимиконструкциями. g - излучение обладаетбольшой проникающейспособностью,изменяющейся вшироких пределах.

МЕХАНИЗМЫДЕЙСТВИЯ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ В БИОЛОГИЧЕСКИХ СИСТЕМАХ: * прямое действие, -молекула испытывает изменения непосредственно от излучения при прохождении через нее фотона или заряженной частицы, -поражающее действие связано с актом возбуждения и ионизации атомов и макромолекул;-* непрямое или косвенное,-молекула получает энергию, приводящую к ее изменениям,вызванные продуктами радиолиза воды или растворенных веществ,а не энергией излучения поглощенной самими молекулами.

ВА ТИПА БИОЛОГИЧЕСКОГО ДЕЙСТВИЯ ИОНИЗАЦИИ НА ЖИВЫЕ КЛЕТКИ: 1 - прямое «пулеобразное» действие (главным образом на ДНК),2 - косвенное действие путем образования свободных радикалов (главным образом на фосфолипиды мембран клеток) Выделяют два типа повреждений.

Прямое повреждение - выбитые электроны разрушают молекулярные связи непосредственно в структуре, где они были выбиты. Косвенное повреждение - ущерб наносят реакционные частицы, которые образовались в дали от данной структуры, но приблизились к ней в результате блужданий.

ТЕОРИЯ МИШЕНИ Тимофеев-Ресовский Н. В., Иванов В. И., Корогодин В. И.,Применение принципа попадания в радиобиологии, М., 1968

В биологических объектах имеются особо чувствительные объёмы— «мишени», поражение которых приводит к поражению всего объекта1. При применяемых в радиобиологии дозах облучениявероятность попадания частицы или фотона в редкую,но жизненно важную внутриклеточную «мишень»

невелика.2. Однако в результате редких попаданий в такую «мишень»даже небольшие дозы ионизирующих излучений могут вызвать гибель

клетки или мутации отдельных генов,частота которых будет возрастать с дозой облучения.

СТАДИИ ПЕРВИЧНОГО ЭТАПА ДЕЙСТВИЯ ИИ НА ОРГАНИЗМ 1. физическая стадия, Время: 10(-15)-10(-13) с,происходит поглощение энергии излученияи взаимодействие ее с веществом. 2. физико- химическая стадия,Время: 10(-13)-10(-10) свозникают первичные свободные радикалы. 3. химическая стадия, Время: 10(-6)-10(-3) спроисходит взаимодействие ионов и радикалов,появляются вторичные свободные радикалы и перекиси,а также осуществляется взаимодействие всех этих продуктовс веществами и структурами клетки организма.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: