СВОБОДНЫЕ РАДИКАЛЫ –частицыс неспареннымиэлектронамина внешнихатомных или молекулярных орбиталях




 

«ГОРМЕЗИС» - инверсионная биологическая реакция организмана малые дозы какого-либо воздействия,противоположная той,которая развивается на более высокие дозы. Инверсия-диаметрально противоположное действиебольших и малых дозировок вещества. Радиационный гормезис-понятие положительного стимулирующеговлияния малых доз ИИ.0,1-1,5 Гр

Термин «гормезис» введен С. Зонтманом и Д. Эрлихом в 1943 г.для обозначения стимуляциикакой либо системы организмавнешними воздействиями,

имеющими силу,недостаточную для проявления вредных факторовПонятие “радиационный гормезис”было введенов биологию в 80- годы и,как в гомеопатии, постулировало, чтоесли большие дозы радиацииоказывают неблагоприятные эффекты на живые организмы- угнетают деление клеток, рост и развитие,

о малые дозы стимулируют физиологические процессы. Гормезис как вариант ответа на определенные дозы воздействияосновывается на широко известном биологическомзаконе Арндта – Шульца, согласно которому• слабые раздражители возбуждают,средние – стимулируют,сильные – ормозят,максимальные – парализуют жизнедеятельность организма РИРОДНЫЙ РАДИОАКТИВНЫЙ ФОН НЕОБХОДИМДЛЯ СУЩЕСТВОВАНИЯ БИОТЫ(Кузин А.М., 1991) Oдновременное снижение внешнего природного радиационного фона(экранирование свинцом), внутреннего(снижение содержания радиоизотопа 40К)

и устранения во вдыхаемом воздухе радона резко снижает (на 50%)рост и развитие высших растений и молодых животных.Под влиянием малых доз атомной радиации, живые ткани, послепрекращения g-облучения, в течение часов (3-5 ч) продуцируют вторичные биогенные излучения (ВБИ), выводящие клетки из покоя, стимулирующие деление клеток,рост и развитие организмов.Нативный белок после g-облучения также в течение несколькихчасов испускает ВБИ.

Белок, коагулированный нагреванием, этим свойством не обладает. радиоактивное излучение – природный фактор,•радиоактивные вещества всегда были, есть и будут в составе организмов,•планета Земля содержит в своём составе десятки радиоактивных элементов,•которые поэтому имеются и в организме всех жителей Земли,

 

 

(3) Клетка как элементарная генетиче­ская и структурно-функциональная биологическая единица.

Клетка — элементарная биологиче­ская система, способная к само­обновлению, самовоспроизведению и развитию. Клеточные структуры ле­жат в основе строения растений и животных. Каким бы многообразным ни представлялось строение организмов, в основе его лежат сходные структуры—клетки. Среди современных организмов можно последовательно проследить формирование клетки в процессе эволюции органиче­ского мира — от прокариотов, таких, как микоплазма и дробянки (общее на­звание бактерий и синезеленых водорослей), к эукариотам. В отношении прокариот и животных типа простей­ших понятия «клетка» и «организм> совпадают. Их называют одноклеточны­ми. Одноклеточными являются также некоторые виды- водорослей и грибов. Большинство растений и животных состоят из многих клеток; они получили название многоклеточных. У многокле­точных организмов клетки образуют ткани, входящие в состав органов. Жизнедеятельность клеток у много­клеточных подчинена координирующе­му влиянию целостного организма. Ко­ординация у животных осуществляется нервной системой и гуморальными факторами, т. е. жидкостями, циркули­рующими в организме, а у растений — непосредственной цитоплазматической связью между клетками и циркулирую­щими веществами (фитогормонами).

Клеточная теория Шванна. Немецкий зоолог Т. Шванн (1810-1882) в 1839 г. опубликовал труд «Микроско­пические исследования о соответствии в структуре и росте животных и расте­ний». В этой классической работе бы­ли заложены основы клеточной теории. Шванн нашел верный принцип сопо­ставления клеток растительных и жи­вотных организмов. Он установил, что хотя клетки животных крайне разно­образны и значительно отличаются от клеток растений, ядра во всех клетках обладают большим сходством. Если в каком-либо видимом под микроскопом образовании присутствует ядро, это образование, по мнению Шванна, мож­но считать клеткой. Основываясь на таком критерии, Шванн выдвинул основные положения клеточной теории: 1) клетка является главной структур­ной единицей всех организмов (рас­тительных и животных); 2) процрсс образования клеток обусловливает рост, развитие и дифференцировку рас­тительных и животных тканей.

Развитие клеточной теории Р. Вирховом. В 1858 г. вышел в свет основной труд немецкого патолога Р. Вирхова (1821—1902) «Целлюлярная патология». Это произведение, ставшее классическим, оказало, влия­ние на дальнейшее развитие учения о клетке и для своего времени имело большое прогрессивное значение. До Вирхова основу всех патологических процессов видели в изменении состава жидкостей и борьбе нематериальных сил организма. Вирхов подошел к объ­яснению патологического процесса материалистически, показав связь его в организме с морфологическими струк­турами, с определенными изменениями в строении клеток. Это исследование положило начало новой науке — па­тологии, которая является основой теоретической и клинической медици­ны. Вирхов ввел в науку ряд новых представлений о роли клеточных струк­тур в организме.

Положение Вирхова «каждая клетка из клетки» — блестяще подтвердилось дальнейшим развитием биологии. В на­стоящее время неизвестны иные способы появления новых клеток, помимо деле­ния уже существующих. Однако этот тезис не отрицает того факта, что на заре жизни клетки развились из обра­зований, еще не имевших клеточной структуры.

 

Положение Вирхова о том, что вне клеток нет жизни, тоже не потеряло своего значения. В многоклеточном организме имеются неклеточные струк­туры, но они — производные клеток. Примитивные организмы — вирусы — приобретают способность к активным процессам жизнедеятельности и раз­множению лишь после проникновения в клетку.

Важным обобщением явилось также утверждение, что наибольшее значение в жизнедеятельности клеток имеют не оболочки, а их содержимое: прото­плазма и ядро.

Однако представления Вирхова не были лишены ошибок. Уже у Шванна проявилась тенденция рассматривать организмы как своеобразную сумму составляющих их клеток. Вирхов и особенно его последователи не только не отказались от этого положения, но и развили его дальше. Так, известный немецкий зоолог-дарвинист Э. Геккель (1834—1919) рассматривал всякий мно­гоклеточный организм как некое «госу­дарство» клеток, в котором каждая клетка «живет» своей самостоятельной жизнью. Отсюда вытекало ошибочное мнение, что патологический процесс в организме представляет собой сумму нарушении жизнедеятельности отдельных клеток, что это —локальный (мест­ный) процесс.

Вирхов и его последователи не виде­ли также качественного различия меж­ду частью и целым, рассматривая орга­низм вне его исторического развития и условий существования. Вирховскую концепцию критиковали русские есте­ствоиспытатели и клиницисты И. М. Сеченов (1829—1905), С. П. Боткин (1832—1889) и И. П. Павлов (1849— 1936). И. М. Сеченов уже в 1860 г. от­метил, что Вирхов изучает организм оторвано от среды, а органы — от организма. Русские клиницисты и фи­зиологи своими исследованиями пока­зали, что организм — единое целое и что интеграция его частей осуществля­ется, в первую очередь, нервной систе­мой. И. П. Павлов установил ведущую координирующую роль центральной нервной системы в организме. Оказа­лось, что обмен веществ, питание орга­нов и клеток находятся также под контролем нервной системы.

В настоящее время наука располага­ет большим фактическим материалом, убеждающим в том, что не только про­цессы жизнедеятельности, но также форма и величина клеток, как и другие морфологические особенности каждой клетки, связаны с теми процессами, которые протекают в организме. Един­ство частей целого обусловлено нервной и гуморальной регуляцией.

В целом появление «Целлюлярной патологии» Вирхова следует рассмат­ривать как важную веху в истории био­логии и медицины. Освобожденная от механистических ошибок и дополненная позднейшими открытиями, она легла в основу современных представлений о клеточном строении организма.

Прокариоты — доядерные ор­ганизмы, не имеющие типичного ядра, заключенного в ядерную мембрану. Генетический материал представлен единственной нитью ДНК, образующей кольцо,— генофором. Эта нить не приобрела еще сложного строения, характерного для хромосом, в ней нет белков-гистонов. Деление клетки толь­ко амитотическое. В клетке прокариотов отсутствуют митохондрии, центриоли, пластиды, развитая система мембран. Из организмов, имеющих клеточное строение, наиболее примитивны мико­плазмы. Это бактериоподобные су­щества,

 

ведующие паразитический или сапрофитный образ жизни. По разме­рам микоплазма приближается к виру­сам. Самые мелкие клетки микоплаз-мы крупнее вируса гриппа, но мельче вируса коровьей оспы. Так, если вирус гриппа имеет диаметр от 0,08 до 0,1 мкм, а вирус коровьей оспы — от 0,22 до 0,26 мкм, то диаметр «клеток» микоплазмы — возбудителя поваль­ного воспаления легких рогатого ско­та — от 0,1 до 0,2 мкм.

В отличие от вирусов, осуществляю­щих процессы жизнедеятельности толь­ко после проникновения в клетки, микоплазма способна проявлять жизне­деятельность, свойственную организ­мам, имеющим клеточное строение. Эти бактериоподобные существа могут рас­ти и размножаться на синтетической среде. Их «клетка» построена из срав­нительно небольшого числа молекул (около 1200), но имеет полный набор макромолекул, характерных для любых клеток (белки, ДНК и РНК) и содер­жит около 300 различных ферментов.

По некоторым признакам «клетки» микоплазмы ближе стоят к клеткам животных, чем растений. Они не имеют жесткой оболочки, окружены гибкой мембраной; состав липидов близок к таковому клеток животных.

Как уже сказано, к прокариотам относятся бактерии и синезеленые во­доросли, объединяемые общим терми­ном «дробянки». Клетка типичных дро­бянок покрыта оболочкой из целлю­лозы. Дробянки играют существенную роль в круговороте веществ в природе: синезеленые водоросли — как синте­тики органического вещества, бакте­рии — как минерализирующие его. Многие бактерии имеют медицинское и ветеринарное значение как возбудите­ли заболеваний.

Эукариоты — ядерные орга­низмы, имеющие ядро, окруженное ядерной мембраной. Генетический ма­териал сосредоточен преимущественно в хромосомах, имеющих сложное строе­ние и состоящих из нитей ДНК и бел­ковых молекул. Деление клеток митоти-ческое. Имеются центриоли, митохонд­рии, пластиды. Среди эукариотов су­ществуют как одноклеточные, так и многоклеточные организмы.

 

 

(4) Структура и функция компонентов клетки. Как правило, клетки обладают микроскопическими размерами. Части клетки, выполняющие различные функ­ции,— органоиды — имеют микроскопи­ческие и субмикроскопические разме­ры. Диаметр большинства клеток ко­леблется от 0,01 до 0,1 мм (или от 10 до 100 мкм). Диаметр самых мелких клеток животных равен 4 мкм. Объем большинства клеток человека нахо­дится в пределах 200—15 000 мкм3. Однако известны и очень крупные клет­ки, видимые невооруженным глазом. Величина клеток зависит от выполняе­мых ими функций. Так, яйцеклетки благодаря накоплению в них пита­тельных веществ достигают больших размеров. У многих растений (арбуз, помидор, лимон и др.) крупные раз­меры имеют клетки плодов, включаю­щие вакуоли с клеточным соком.

Размеры клеток прямо не связаны с величиной организма. Так, клетки пе­чени и почек у лошади, крупного скота и мыши имеют примерно одинаковую величину. Величина органов, как и размеры целого организма животных и растений, зависит от числа клеток.

Форма клеток также обусловлена выполняемыми ими функциями. Мы­шечные клетки вытянуты. Клетки по­кровной ткани многоугольны. Нервные клетки благодаря большому числу от­ростков приобрели звездчатую форму. Свободно подвижные лейкоциты имеют округлую и могут принимать амебоид­ную форму и т. д.

Число клеток, строящих организм, разнообразно: от одной (у протестов) или небольшого числа (у коловраток и круглых червей) до многих миллиар­дов, как у большинства многоклеточ­ных.

Структурные компоненты цитоплаз­мы. Строение клеток животных и расте­ний в основных чертах сходно. В теле клетки — протоплазме — различают цитоплазму и кариоплаз­му. Цитоплазма и кариоплазма (яд­ро) — обязательные составные части клетки. При удалении ядра клетка длительно существовать не может; точно так же ядро, выделенное из клет­ки, погибает.

Цитоплазма составляет основную массу клетки. При рассматривании живой клетки в световом микроскопе цитоплазма представляется гомогенной, бесцветной, прозрачной вязкой жидко­стью. Однако электронный микроскоп позволил увидеть тонкую структуру цитоплазмы (рис. 2.2). В цитоплазме различают гиалоплазу — цитоплазматический матрикс, органоиды и вклю­чения.

Цатоплазматаческий мат­рикс. Основное вещество клетки состав­ляет цитоплазматический матрикс, или гиалоплазма. С ним связаны коллоид­ные свойства цитоплазмы, ее вязкость, эластичность, сократимость, внутреннее движение. По химическому составу ци­топлазматический матрикс построен преимущественно из белков; в состав его входят ферменты. Под электронным микроскопом цитоплазматическиймат-рикс представляется однородным тон­козернистым веществом. Иногда обна­руживаются тонкие нити (толщиной менее 10 нм) или пучки их. Даже в од­ной клетке разные участки цитоплазматического матрикса могут иметь неоди­наковую макромолекулярную струк­туру.

Функционально цитоплазматический матрикс является внутренней средой клетки, местом осуществления внутриклеточного обмена. В нем осу­ществляется гликолиз, с которым свя­зан поток энергии. В цитоплазматическом матриксе расположены структуры клетки — органоиды, ядра и вклю­чения

Органоиды— это постоянные диф­ференцированные участки цитоплазмы, имеющие определенные функции и строение. Различают органоиды общего значения и специальные. Специальные органоиды характерны для клеток, вы­полняющих определенные функции: миофибрилы, с которыми связано со­кращение мышечных клеток, реснички эпителия в трахеях и бронхах, микро­ворсинки всасывающей поверхности эпителия клеток тонких кишок и т.д. К органоидам общего значения отно­сятся: эндоплазматическнй ретикулум, рибосомы, лизосомы, митохондрии, пластинчатый комплекс, клеточный центр (центросома), микротрубочки, пластиды.

Эндоплазматическая сеть, или вакуолярная си­стема, обнаружена в клетках всех растений и животных, подвергнутых исследованию под электронным микро­скопом. Она представляет собой систе­му мембран, формирующих сеть ка­нальцев и цистерн. Эндоплазматическая сеть имеет большое значение в про­цессах внутриклеточного обмена, так как увеличивает площадь «внутренних поверхностей» клетки, делит ее на отсеки, отличающиеся физическим со­стоянием и химическим составом, обес­печивает изоляцию ферментных си­стем, что, в свою очередь, необходимо для их последовательного вступления в согласованные реакции. Непосредст­венным продолжением эндоплазматической сети являются ядерная мембрана, отграничивающая ядро от цитоплазмы, и наружная мембрана (плазмалемма), расположенная на периферии клетки.

В совокупности внутриклеточные ка­нальцы и цистерны образуют целост­ную систему, называемую некоторыми исследователями вакуолярной. Наи­более развита вакуолярная система в клетках с интенсивным обменом ве­ществ.

Предполагают ее участие в ак­тивном перемещении внутри клетки жидкостей, как тех, которые синтези­руются в клетке, так и поступающих извне.

Часть мембран несет на себе рибосо­мы, на другой части рибосом нет. В свя­зи с этим различают два типа эндоплазматической сети — гранулярную и гладкую. С гранулярной эндоплазматической сетью связан синтез белков. В одних специальных лишенных гранул вакуолярных образованиях происхо­дит синтез жиров, в других — глико­гена. Ряд частей эндоплазматической сети связан с пластинчатым комплексом Гольджи и, по-видимому, имеет отношение к выполняемым им функциям.

Образования вакуолярной системы очень лабильны и могут меняться в зависимости от физиологического со­стояния клетки, характера обмена и при дифференцировке.

Рибосомы — небольшие сфери­ческие тельца, имеющие размеры от 15 до 35 нм. Они расположены в цитоплазматическом матриксе, а также связаны с мембранами эндоплазматической сети.

Наибольшее количество рибосом об­наружено в клетках, интенсивно син­тезирующих белок. Рибосомы любых органов — от бактерий до млекопитаю­щих — характеризуются сходством структуры и состава. В состав их входят белок и так называемая рРНК. Каждая из рибосом состоит из двух неравных частей — субъеди­ниц. В каждой из субъединиц находит­ся по молекуле РНК в виде свернутого в спираль тяжа, между витками кото­рого находится белок. Кроме того, рибосомы содержат магний.

 

Молекулы информационной РНК (иРНК), синтезированные в ядре, поступают к рибосомам. Из цитоплаз­мы молекулами транспортных РНК (тРНК) к меньшей субъединице рибо­сом доставляются аминокислоты. Из них с участием ферментов полимераз и АТФ здесь синтезируются белки. Обра­зующаяся белковая цепочка выстраи­вается в большей субъединице.

Рибосомы обычно объединены в группы — полисомы (или полирибосо­мы) — от 5 до 70 рибосом. Считается, что рибосомы формируются ядрышками и затем из ядра поступают в цито­плазму.

Лизосом ы (гр. lisis— растворе­ние, soma — тело) —шаровидные об­разования, имеющие диаметр от 0,2 до 1 мкм. В лизосомах содержатся фер­менты, разрушающие большие молеку­лы сложных органических соединений, поступающих в клетку (белки, нуклеи­новые кислоты, полисахариды). Таким образом, проникающие в клетку веще­ства подготавливаются ферментами лизосом к синтезу белков и других ве­ществ.

В лизосомах подвергаются разруше­нию микроорганизмы и вирусы. Фер­менты лизосом переваривают также отмершие структуры клетки и целые погибшие в организме клетки, т. е. выполняют процессы аутофагии клетки (гр. autos— сам, fagos— пожирание).

Лизосомы играют существенную роль в индивидуальном развитии организ­мов, разрушая временные органы эмбрионов и личинок например, жабры и хвост у головастиков лягушки. Они встречаются в любых растительных и животных клетках. Выделяют три группы этих органоидов: прелизосомы, собственно лизосомы и постлизосомы. В прелизосомах находятся вещества, подлежащие перевариванию, но отсут­ствуют ферменты. Собственно лизосомы подразделяются на пеовичные и вто­ричные. Первичные лизосомы содержат вновь синтезированные ферменты. Вто­ричные образуются в результате слия­ния первичных лизосом с прелизосо-мами: таким образом в них содержится как субстрат, подлежащий перевари­ванию, так и необходимые ферменты. В зависимости от перевариваемого ма­териала различают вторичные лизосо­мы двух типов: аутосомы (перевариваю­щие утратившие свою функцию внутри­клеточные структуры) и гетерофагосомы (переваривающие вещества, посту­пившие в клетку). Пищеварительные вакуоли простейших и фагоцитов обра­зуются из слившихся гетерофагосом.

Постлизосомы содержат только ос­татки непереваренного субстрата. Каж­дая лизосома ограничена плотной мем­браной, изолирующей содержащиеся в ней ферменты от остальной цитоплаз­мы. Повреждение лизосом и выход ферментов из них в цитоплазму приво­дит к быстрому растворению (лизису) всей клетки.

Утрата лизосомами какой-либо из ферментативных систем приводит к тя­желым патологическим состояниям це­лого организма — обычно наследствен­ным болезням. Они получили название болезней накопления, так как связаны с накоплением в лизосомах полноцен­ных, но непереваренных веществ. Эти болезни могут проявляться в недоста­точности развития скелета, ряда внут­ренних органов, центральной нервной системы и т. д. С дефицитом лизосомных ферментов связывают развитие атеросклероза, ожирения и других наруше­ний. Патологическая активность лизо­сом может повлечь за собой разрушение жизненно важных структур.

Митохондрии (гр. mitos — нить, chondros — зернышко) — орга­ноиды в виде гранул, палочек, нитей, видимых в световом микроскопе. Ве­личина митохондрий сильно колеблет­ся от 0,5 мкм до максимальной длины — 7 мкм у палочковидных. Митохондрии встречаются обязательно во всех клет­ках растений и животных. Число их в клетках, выполняющих различную функцию, неодинаково и колеблется от 50 до 5000. Электронная микроскопия дала возможность изучить детали стро­ения митохондрий. Стенка митохондрии состоит из двух мембран: наружной и внутренней: последняя имеет выросты внутрь—гребни, или кристы, делящие митохондрию на отсеки, заполненные гомогенным веществом — лттриксом. Основная функция митохондрий — окисление с последующим превраще­нием энергии разлагаемых соединений в энергию фосфатных связей (АТФ — аденозинтрифосфат и АДФ — аденозиндифосфат). В таком состоянии энер­гия становится наиболее доступной для использования в жизнедеятельно­сти клетки, в частности для синтеза веществ.

Установлено также, что в матриксе митохондрий находятся рибосомы, осу­ществляющие синтез белка. Таким образом, митохондрии — не только энергетические центры, но и органоид, в котором наряду с ядром и рибосомами происходят биосинтетичёские про­цессы.

Существует структурная связь ми­тохондрий с ядром, особенно заметная в некоторых, переходящих к делению, клетках. В таких клетках обнаружены мельчайшие структуры в виде трубо­чек, соединяющих митохондрии с ядер­ной оболочкой. Считается, что по этим трубочкам происходит обмен веществ.

Митохондрии размножаются путем перешнуровки; при делении клетки они более или менее равномерно распреде­ляются между дочерними клетками. Таким образом между митохондриями клеток последовательных генераций осуществляется преемственность.

Как видно из сказанного, митохонд­риям, в отличие от других органоидов, присуща определенная автономия внут­ри клетки. Они никогда не возникают наново, а всегда образуются лишь в результате деления, обладают собствен­ной ДНК, отличающейся от ядерной по своему составу и иногда имеющей форму кольца, как у прокариот. Ри­босомы митохондрий мельче цитоплазматических. На этих рибосомах синте­зируются митохондриальные белки, но этот синтез можно подавить дей­ствием антибиотика хлорамфеникола. Этот антибиотик способен прекращать синтез белков в бактериях, но не ока­зывает такого действия на цитоплазматические рибосомы.

Перечисленные особенности митохон­дрий, указывающие на их сходство с прокариотами, привели к представле­нию о симбиотическом происхождении этого органоида. Согласно данной ги­потезе, какие-то из аэробных прокари­от проникли в более крупную анаэроб­ную клетку и вели первоначально воз­можно даже паразитический образ жизни. В дальнейшем партнеры этого сожительства в процессе эволюции приспособились друг к другу и быв­ший «паразит» превратился в органо­ид, необходимый для существования клетки. Но, став органоидом, предки митохондрий потеряли часть своего генетического материала. В эукариотных клетках митохондриальная ДНК кодирует лишь часть митохондриальных белков, большая же часть их синтезируется вне митохондрии и связана с ядерной ДНК.

Пластинчатый комплекс Гольджи виден в световом мик­роскопе как специфический дифферен­цированный участок цитоплазмы, рас­положенной обычно возле ядра. В клет­ках высших животных он представ­ляется как сетчатая структура, иногда в виде скопления чешуек, палочек и зернышек. Электронно-микроскопиче­ские исследования позволили убе­диться, что пластинчатый комплекс построен также из мембран и напоми­нает стопку полых рулонов, положен­ных друг на друга. В его состав вхо­дит система трубочек с пузырьками на концах. В клетках растений и беспозво­ночных животных пластинчатый ком­плекс удалось обнаружить лишь с по­мощью электронного микроскопа. Он образован небольшими тельцами — диктиосомами, рассеянными по всей цитоплазме.

Полагают, что основная функция пластинчатого комплекса — концент­рация, обезвоживание и уплотнение продуктов внутриклеточной секреции и веществ, поступивших извне, пред­назначенных для выделения из клетки. С ним связаны синтез полисахаридов, липидов, образование зерен желтка в развивающихся овоцитах и формиро­вание лизосом.

При делении клеток образование бо­розды деления связано с комплексом Гольджи. Часть пластинчатого ком­плекса из материнской клетки пере­ходит к дочерней. Следовательно, этот органоид имеет преемственное про­исхождение. Образование пластинча­того комплекса заново не наблюда­лось.

Клеточный центр (цент­росома) — органоид, отчетливо ви­димый в световой микроскоп, состоя­щий из одной или двух мелких гра­нул — центриолей и лучистой сферы вокруг них. С помощью электронного микроскопа установлено, что каждая центриоль — это цилиндрическое тель­це длиной 0,3—0,5 мкм и диаметром около 0,15 мкм. Стенки цилиндра со­стоят из 9 параллельно расположенных трубочек. Ох. центриолей под углом отходят отростки, которые, по-види­мому, являются дочерними центриолями.

Клеточный центр иногда занимает геометрический центр клетки (откуда происходит название органоида). Ча­ще же он оттеснен ядром или включе­ниями к периферии, но обязательно располагается вблизи ядра по одной оси с центром ядра и центром клетки. Активная роль клеточного центра обна­руживается при делении клетки. Рас­ходясь в противоположные стороны, центриоли формируют полюсы деля­щейся клетки. По-видимому, с его стру­ктурами связаны участки цитоплаз­мы, способные к активному движению. Образование новых центриолей проис­ходит путем отпочковывания от роди­тельской. Сначала образуется неболь­шой зачаток, который постепенно уве­личивается и, наконец, полностью сформировавшись, отделяется от мате­ринского органоида.

Микротрубочки — длинные тонкие цилиндры, имеющие диаметр около 24 нм. Оболочка микротрубочек трехслойная, толщиной около 5 нм. Микротрубочки формируются в ре­зультате полимеризации белка тубули-на. В делящихся клетках они образуют нити веретена, входят в состав ресни­чек и жгутиков подвижных клеток, т. е. структур, связанных с движением, и содержат фермент АТФ-азу. Кроме того, они играют опорную роль, яв­ляясь как бы цитоскелетом, поддер­живающим определенную форму всей клетки и ее органоидов, а также прини­мают участие в транспорте воды, ионов и некоторых молекул.

Пластиды — органоиды, харак­терные для клеток растений и отсут­ствующие в клетках животных. Не имеют пластид также клетки грибов, бактерий и синезеленых водорослей.

Репродукция пластид происходит под контролем содержащейся в них ДНК. Пластиды ранних стадий развития — пропластиды — сходны с митохонд­риями, имеющими малое число крист. Предполагается, что пластиды имеют симбиотическое происхождение, про­изошли от синезеленых водорослей, вступивших в симбиоз с первичной эукариотической клеткой.

Цитоплазматические мем­браны. При изучении различных клеток животных, растений -и бак­терий всегда обнаруживается, что кле­точные органоиды имеют в основе сво­ей мембранные структуры. Они харак­терны для эндоплазматической сети, пластинчатого комплекс", оболочек » крист митохондрий, лизосом, вакуолей, пластид, ядерной оболочки и наружной клеточной мембраны.

Современная цитология рассматри­вает цитомембраны как один из основ­ных компонентов клеточной органи­зации. Цитоплазматическая мембра­на — сложная система, ответственная за основные процессы жизнедеятель­ности: разделение содержимого клетки на отсеки, или клеточные каналы (ва­куоли, канальцы, цистерны), благодаря чему в клетке одномоментно могут

протекать различные, даже антаго­нистические, процессы; осуществление регуляции метаболических потоков; поддержание разности концентраций веществ (ионы, метаболиты) путем пере­мещения против градиента концентра­ции (активный перенос); создание раз­ности электрических потенциалов; уча­стие в процессах синтеза и катализа. Кроме того, мембраны являются стромой для точного размещения ферментов и, следовательно, обусловливают упо­рядоченность обменных реакций. Так, в эндоплазматической сети происходит синтез белков, жирных кислот и фосфолипидов. В митохондриях осуществ­ляются цикл Кребса, окислительное фосфорилирование, окисление жирных кислот. В плазматической (наружной) мембране в связи с иммунологическими процессами могут протекать гликолитические реакции. Большинство забо­леваний человека и животных связа­ны с нарушением в строении и функ­циях мембран.

Как показали комплексные цитофи-зические исследования, элементарная мембрана состоит из трех слоев, вклю­чающих в себя молекулы белков и липидов. Толщина каждого слоя около 2,5 нм. Часть белковых молекул обла­дает ферментативными свойствами. Каждая молекула липида имеет водо­растворимую и водонерастворимую группы. В клеточных мембранах ли-пидные молекулы располагаются водо-нерастворимыми концами друг к другу, а водорастворимыми направлены к бел­ковым молекулам.

Единого мнения о молекулярной ор­ганизации мембран нет. По одним пред­ставлениям белковые молекулы плот­но прилегают друг к другу и представ­ляют наружные слои, по другим — белки не образуют слоя, а в виде мо­заики из глобул расположены нерав­номерно; при этом одни из них нахо­дятся только на поверхности, другие погружены в липидную фазу частично или полностью, иногда пронизывая ее насквозь. Большая часть белковых мо­лекул не связана с липидными моле­кулами и только плавает между ними. Согласно третьей гипотезе, в состав мембран

 

кроме липидов и белков входят также молекулы гликолипидов и гликопротеидов с разветвленными угле­водными цепями. Эти разветвленные цепи на поверхности мембраны пере­плетаются друг с другом, образуя как бы каркас с вплетенными в него моле­кулами белков. Более того, углеводные цепи гликолипидов и гликопротеидов связаны с микротрубочками, состав­ляющими цитоскелет. Часто плазматическая мембрана образует множество пальцевидных выступов— микроворсинок. Это значительно увели­чивает всасывающую поверхность кле­ток, облегчая перенос веществ через наружную мембрану и их прикрепле­ние к поверхности субстрата.

Существует, по-видимому, несколь­ко типов мембран, отличающихся по строению в ферментативными свойства­ми белков, образующих с липидами липопротеидные комплексы. С этим связаны неодинаковые функциональные свойства мембран различных орга­ноидов и различных участков клетки. Так, мембраны митохондрий тонки (около 5 нм) и имеют глобулярную структуру; мембраны сетчатого аппа­рата толще (6—8 нм), содержат липид-ные и фосфорные молекулы. В мем­бранах находятся молекулы-рецепто­ры, благодаря чему они восприимчивы к биологически активным соединениям, например, гормонам.

Наружная или плазматическая мем­брана (цитолемма или плазмолемма) ограничивает клетку от окружающей микросреды и благодаря наличию мо­лекул-рецепторов обеспечивает целе­сообразные реакции клетки на измене­ния в окружающей ее среде. Она при­нимает непосредственное участие в про­цессах обмена, клетки со средой — по­ступлении веществ в клетку и выведе­нии их из нее. Она никогда не нахо­дится в состоянии покоя, совершая обычно волнообразные колебательные движения.

В тканях растений между соседними клетками образуются цитоплазматические мостики — плозмодесмы, через которые обеспечивается взаимосвязь лежащих рядом клеток. В расти­тельных клетках цитоплазматическая мембрана снаружи покрыта клеточной оболочкой.

Поток информации. Благодаря наличию потока информации клетка, используя многовековой эволюционный опыт предков, создает органи­зацию, соответствующую критериям живого, сохраняет и поддержива­ет эту организацию во времени, несмотря на меняющиеся условия внешней среды, передает ее в ряду поколений. В потоке информации участвуют ядро (ДНК хромосом), макромолекулы, переносящие информацию в цитоплазму (иРНК), цитоплазматический аппарат транскрипции (рибосомы и полисомы, тРНК, ферменты активации аминокислот). На завершающем этапе этого потока полипептиды, синтезированные на полисомах, приобретают третичную и четвертич­ную структуру и используются в качестве катализаторов или структур­ных блоков (рис. 7). Кроме ядерного генома, основного по объему заключенной информации, в эукариотических клетках функционируют также геномы митохондрий, а в зеленых растениях и хлоропластов.

Кодирование заключается в записи определенных сведений при помощи специальных символов с целью придать информации компактность, обеспечить ее использование неоднократно и по частям,

 

создать удобства при транспортировке. Типичный пример кодирова­ния — фиксация человеческой мысли в виде письменного текста. В процессе кодирования путем сочетаний символов составляют кодовые группы, служащие для обозначения существенного элемента информации. Весь объем сообщения представлен опреде­ленной последовательностью кодовых групп. Совокупность символов составляет алфавит, а совокупность кодовых групп словарь кода.

Символами кода ДНК служат дезоксирибонуклеотиды, различаю­щиеся по азотистому основанию (адениловое, гуаниловое, тимидило-вое, цитидиловое), поэтому алфавит четырехбуквенный. Кодовой группой служит кодон — участок молекулы ДНК, состоящий из трех нуклеотидов. Это делает код триплетным. Информация записывается в линейном порядке по длине молекулы ДНК в виде последовательности кодонов. Код ДНК неперекрывающийся, так как каждый нуклеотид входит в один кодон. Он не имеет запятых и в пределах блока информа­ции, соответствующего, например, одному полипептиду, кодоны сле­дуют друг за другом без перерывов.

Символом кода белка служат аминокислоты. Они же соответству­ют и кодовым группам. Информация также записывается в линейном порядке по длине молекулы полипептида в виде последовательности аминокислот.

Сопоставление участка молекулы ДНК как начального пункта и отвечающего ему по содержанию полипептида как завершающего пункта потока информации указывает на коллинеарность кодов ДНКи белка: кодоны следуют в том же порядке, что и остатки аминокислот, кодируемых ими.

Положение конкретного аминокислотного остатка в молекуле полипептада может быть обозначено в ДНК при помощи одного из нескольких кодонов-синонимов, что свидетельствует о вырож­денности кода ДНК. Указанное свойство вытекает из соотношения объемов словарей кодов ДНК и белка. Сочетанием по три из четырех возможных дезоксирибонуклеотидов образуются 64 различных кодона, тогда как в состав белка входит 20 аминокислот. Вырожденность кода ДНК носит регулярный характер: большая часть информации приходится на первые два нуклеотида кодона. Каждой аминокислоте соответствует не более двух таких начальных дуплета, тогда как число кодонов-синонимов может доходить до шести (например для аргинина). Вырожденность кода и информационная неравнозначность нуклеотидов в кодоне влияют на фенотипическое выражение точковых мутаций. Действительно, наряду с изменениями, приводящими к замене одного аминокислотного остатка другим, возможны «безмолвные» мутации, если изменение переводит кодон в синоним. Хотя замена кодона синонимом не нарушает последова­тельности аминокислот в полипептиде, она может повлиять на скорость его синтеза. Три кодона из 64, названные бессмысленными, не кодируют аминокислот. Они служат терминаторами и обознача­ют точку прекращения считывания информации. Код ДНК универсален в том смысле, что он тождествен у всех организмов. Единичные факты, не согласующиеся с таким заключены» ем, касаются деталей пунктуации (например, обозначения начала считывания у кишечной пало



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: