Космическое излучение. Земная радиация.




В околоземном космическом пространстве (ОКП) различают несколько типов космических лучей. К стационарным принято относить галактические космические лучи (ГКЛ), частицы альбедо и радиационный пояс. К нестационарным — солнечные космические лучи (СКЛ).

Галактические космические лучи (ГКЛ)

Галактические космические лучи (ГКЛ) состоят из ядер различных химических элементов с кинетической энергией Е более нескольких десятков МэВ/нуклон, а также электронов и позитронов с Е>10 МэВ. Эти частицы приходят в межпланетное пространство из межзвёздной среды. Источником этих частиц являются сверхновые звезды нашей Галактики. Возможно, однако, что в области Е<100 МэВ/нуклон частицы образуются за счет ускорения в межпланетной среде частиц солнечного ветра и межзвездного газа. Дифференциальный энергетический спектр ГКЛ носит степенной характер.

Вторичные частицы в магнитосфере Земли: радиационный пояс, частицы альбедо

Внутри магнитосферы, как и в любом дипольном поле, есть области, недоступные для частиц с кинетической энергией E, меньше критической. Те же частицы с энергией E<Eкр, которые все-таки уже там находятся, не могут эти области покинуть. Эти запрещённые области магнитосферы называются зонами захвата. В зонах захвата дипольного (квазидипольного) поля Земли действительно удерживаются значительные потоки захваченных частиц (прежде всего, протонов и электронов).

В околоземном пространстве можно выделить две торообразные области, расположенные в экваториальной плоскости примерно на расстоянии от 300 км (в зоне БМА) до 6000 км (внутренний РПЗ) и от 12000 км до 40000 км (внешний РПЗ). Основным наполнением внутреннего пояса являются протоны с высокими энергиями от 1 до 1000 МэВ, а внешнего — электроны.

Максимум интенсивности протонов низких энергий расположен на расстояниях L~3 радиусов Земли от её центра. Малоэнергичные электроны заполняют всю область захвата. Для них нет разделения на внутренний и внешний пояса. Поток протонов во внутреннем поясе довольно устойчив во времени. Процесс взаимодействия ядер первичного космического излучения с атмосферой сопровождается возникновением нейтронов. Поток нейтронов, идущий от Земли (нейтроны альбедо), беспрепятственно проходит сквозь магнитное поле Земли. Поскольку нейтроны нестабильны (среднее время распада ~ 900 с), часть из них распадается в зонах, недоступных для заряженных частиц малых энергий. Таким образом, продукты распада нейтронов (протоны и электроны) рождаются прямо в зонах захвата. В зависимости от энергии и питч-углов эти протоны и электроны могут либо оказаться захваченными, либо покинуть эту область.

Частицы альбедо — это вторичные частицы, отраженные от атмосферы Земли. Нейтроны альбедо обеспечивают радиационный пояс протонами с энергией до 10³ МэВ и электронами с энергией до нескольких МэВ.

Солнечные космические лучи

Солнечными космическими лучами (СКЛ) называются энергичные заряженные частицы — электроны, протоны и ядра, — инжектированные Солнцем в межпланетное пространство. Энергия СКЛ простирается от нескольких кэВ до нескольких ГэВ. В нижней части этого диапазона СКЛ граничат с протонами высокоскоростных потоков солнечного ветра. Частицы СКЛ появляются вследствие солнечных вспышек.

В основном, ответственность за естественную земную радиацию несут три семейства радиоактивных элемента — уран, торий и актиний. Главными источниками земной радиации являются радиоактивные элементы, содержащиеся в горных породах, которые образовались в результате геофизических процессов. Наибольшее содержание радиоактивных элементов содержится в гранитных породах и вулканических образованиях. В течение эволюционных процессов радиоизотопы мигрируют, участвуя в метрологических и геохимических формированиях окружающей среды. В результате соединения со стабильными элементами они участвуют в обменных реакциях живых организмов, тем самым создавая естественную радиоактивность обитателей Земли. К наиболее значимым элементам, обеспечивающим жизнедеятельность живой материи относятся изотопы калия, углерода и трития, а всего в биосфере находится значительно больше радиоактивных элементов, что обуславливает общую радиоактивность человека.

Основную роль в радиоактивность человека вносит калий-40 — около 20 • 103 Бк или 0,2% от общей массы человека, углерод-14 — около 30 • 102 Бк или 18% от общей массы человека, которые поступают в организм человека в основном по пищевой цепочке.

Уровни земной радиации неодинаковы и зависят от концентрации радионуклидов в том или ином участке земной коры

В малых концентрациях естественные источники радиоактивности содержатся в любой почве. Однако, в зависимости от структуры почвы, их больше в гранитных породах, глиноземах и меньше в песчаных и известковых почвах.

Половину годовой индивидуальной эффективной эквивалентной дозы облучения от земных источников радиации человек получает от невидимого, не имеющего вкуса и запаха тяжёлого газа радона.

Радон в 7,5 раза тяжелее воздуха и является альфа-радиоактивным с периодом полураспада 3,8 суток. После альфа-распада ядро радона превращается в ядро полония.

Основную часть дозы облучения от радона человек получает, находясь в закрытом, непроветриваемом помещении, где повышена его концентрация

Радон может проникать сквозь трещины в фундаменте, через пол из поверхности Земли и накапливается в основном на нижних этажах жилых помещений, создавая там повышенную радиацию. Одним из источников радоновой радиации могут быть конструкционные материалы, используемые в строительном производстве. К ним в первую очередь относятся материалы с повышенной радиоактивностью — гранит, пемза, глинозём, фос-фогипс.

Вода, используемая для бытовых и пищевых целей, обычно содержит мало радона, однако глубоко залегающие водяные пласты могут иметь повышенную его концентрацию. Высокая концентрация радона образуется в ванных комнатах, где радон, испаряясь из горячей воды при принятии душа или ванны, попадает в организм с вдыхаемым воздухом

Основными мероприятиями по устранению влияния радона, уменьшению его концентрации и снижению дозообразующего фактора являются: заделывание швов, трещин в фундаментах зданий, отказ от строительных материалов, содержащих радон, оклейка, окраска покрытий стен пластиковыми материалами, кипячение воды для пищевых нужд, особенно из глубоких артезианских скважин и колодцев, частое проветривание помещений на нижних этажах, ванных комнат.

В процессе развития материального производства, технологий, человек может локально изменить распределение естественных источников радиации, что приводит к повышенному облучению. Такими примерами являются полеты на самолетах, применение материалов с повышенной концентрацией радионуклидов, использование каменного угля и природного газа

Вклад в общую дозу от естественной радиации вносит уголь, сжигаемый как на тепловых электростанциях, так и для обычных бытовых нужд Если уголь содержит небольшое количество радионуклидов, то в угольных шлаках может быть высокая их концентрация. В связи с этим, нецелесообразно использовать шлаки угля как наполнители к цементам и бетонам, а золу — для улучшения почв. Поэтому тепловые электростанции являются серьезным источником внешнего и внутреннего облучения населения, проживающего на прилегающих территориях.

Другой источник ТПЕРФ — промышленное использование продуктов переработки фосфоритов. При этом следует учесть, что добыча фосфорной руды в мире очень велика и из года в год возрастает. Процесс переработки фосфорной руды экологически небезопасен, так как отходы руды содержат радионуклиды. Применение фосфорных удобрений в сельском хозяйстве, стимулирует усвоение естественных радионуклидов растениями из почвы. Использование отходов фосфорного производства в качестве стройматериалов (гипса) также является возможным дополнительным источником облучения.

Увеличение радиационности почв могут дать фосфорные удобрения, особенно вносимые в жидком виде. В данном случае очень важно соблюдение сроков, по истечению которых можно использовать под выпасы сельскохозяйственные угодья после агрохимии фосфором.

Человечество во всем мире все шире для бытовых нужд использует большое количество потребительских товаров, содержащих естественные радионуклиды. К таким товарам можно отнести часы со светящимся циферблатом, содержащим радий, специальные оптические приборы, аппаратуру, применяемую в аэропортах и таможенном досмотре и т.д.

Нельзя недооценивать ионизирующее излучение от телевизоров и, в особенности, от дисплеев компьютеров. Это излучение, в некоторых случаях, может превышать естественные фоновые уровни. В связи с этим не рекомендуется слишком близко смотреть телепередачи или продолжительное время находится у дисплея компьютера, особенно детям.

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-13 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: