Качественное и количественное




ПРИКЛАДНОЕ ИСПОЛЬЗОВАНИЕ ФИЗИКО-

ХИМИЧЕСКИХ МЕТОДОВ ПРИ ОЦЕНКЕ КАЧЕСТВАСЫРЬЯ И ГОТОВОЙ ПРОДУКЦИИ

Белок

Белки – высокомолекулярные азотсодержащие органические соединения, молекулы которых построены из остатков аминокислот.

В природе существует примерно от 1010 до 1012 различных белков, содержание которых в биологических объектах зависит от ряда факторов – климатических условий, урожайности, биологических особенностей. Белки в питании человека занимают особое место. Они выполняют ряд специфических функций, свойственных только живой материи. Белковые вещества наделяют организм пластическими свойствами, заключающимися в построении структур субклеточных включений (рибосом, митохондрий и т.д.), и обеспечивают обмен между организмом и окружающей внешней средой. В обмене веществ участвуют как структурные белки клеток и тканей, так и ферментные и гормональные системы. Белки регулируют и координируют все то многообразие химических превращений в организме, которое обеспечивает функционирование его как единого целого.

Эффективность обмена белков в значительной степени зависит от количественного и качественного состава пищи. При поступлении белков (с пищей) ниже рекомендуемых норм, в организме начинают распадаться белки тканей (печени, плазмы крови и т.д.), а образующиеся аминокислоты – расходоваться на синтез ферментов, гормонов и других, необходимых для поддержания жизнедеятельности организма, биологически активных соединений. Повышенное содержание белков в составе пищи значительного влияния на обмен веществ в организме человека не оказывает, при этом избыток продуктов азотистого обмена выводится с мочой.

Состояние белкового обмена в большей степени зависит от недостатка или отсутствия незаменимых аминокислот. Клетки организма человека не могут синтезировать необходимые белки, если в составе пищи отсутствует хотя бы одна незаменимая кислота.

Средне суточная физиологическая потребность в белке в течении более чем ста лет постоянно исследуется и периодически отражается в решениях ВОЗ, ФАО и национальных организаций различных стран. Эти величины носят ориентировочный характер, так как они находятся в стадии постоянного уточнения в зависимости от возраста человека, пола, климата, индивидуальных и национальных особенностей и степени загрязнения окружающей среды. В соответствии с рекомендациями ВОЗ и ФАО величина оптимальной потребности в белке составляет 60-100 г в сутки или 12-15 % от общей калорийности пищи. В пересчёте на 1 кг массы тела потребность белка в сутки для детей, в зависимости от возраста, колеблется от 1,05 до 4,00 г.

По своему строению белки представляют собой высокомолекулярные соединения, состоящие из аминокислот. Соединенные амидной (пептидной) связью (-СО - NH) аминокислоты образуют полипептиды простого (протеина) и сложного (протеида) строения. В состав протеидов дополнительно входят небелковые вещества (липиды, углеводы и т.д.).

Известно, что в состав белков входят двадцать различных аминокислот, причем восемь из них не могут синтезироваться в организме человека и поэтому являются незаменимыми (валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин).

Полузаменимые аминокислоты синтезируются в организме, но в недостаточном количестве, поэтому частично должны поступать с пищей. К таким аминокислотам относятся аргинин, тирозин, гистидин (последняя аминокислота не синтезируется в организме детей).

Заменимые аминокислоты синтезируются в организме в достаточном количестве. Они представлены девятью аминокислотами, хотя некоторые из них можно отнести к условнозаменимым (например, тирозин образуется в организме только из фенилаланина и при поступлении последнего в недостаточном количестве может оказаться незаменимым; цистин и цистеин могут образовываться из метионина, но необходимы при недостатке этой аминокислоты).

В среднем белковые молекулы содержат (50-54) % углерода; (15-18) % азота; (20-23) % кислорода; (6-8) % водорода и (0,3-2,5) % серы.

Несмотря на огромное разнообразие аминокислотного состава белков, каждому индивидуальному белку характерен только для него строго определенный аминокислотный состав, что обусловлено генетическим кодом, сформированным в процессе эволюции.

Все протеиногенные аминокислоты являются, α – аминокислотами с характерной для них общей структурной особенностью – наличием карбоксильной и аминной групп, связанных с атомом углерода в α – положении.

Часть структуры всех аминокислот одинакова, однако функциональная группа (R – остаток) не одинаков по структуре, электрическому заряду и растворимости. От соответствующего сочетания этих групп зависят свойства белковых молекул.

В зависимости от химических свойств R-групп все протеиногенные аминокислоты подразделяются на четыре основных класса:

- неполярные (гидрофобные);

- полярные;

- отрицательно заряженные;

- положительно заряженные.

По своей стехиометрической конфигурации все аминокислоты, за исключением глицина, имеют ассиметричный атом углерода в α – положении, с которым связаны четыре разные группы (радикал, атом водорода, карбоксильная группа и аминогруппа). Таким образом, аминокислоты обладают оптической активностью (дисперсией оптического вращения).

Присутствие аминокислот, содержащих основные (- NH2) и кислые (-СООН), обуславливает амфотерные (амфолитные) свойства. Они обуславливают высокую буферность водных растворов белков, а следовательно, постоянное значение рН живой клетки. Эти свойства положены в основу методов разделения, идентификации и количественного анализа аминокислот, нашедших широкое использование при определении аминокислотного состава в белковой молекуле.

В таблице 3.1 приведены свойства протеиногенных L- α-аминокислот. Свойства аминокислот определяют функциональные свойства белков, под которыми принято понимать физико-химические характеристики, определяющие их поведение при переработке в пищевые продукты, а так же обеспечивающие желаемую структуру, технологические и потребительские свойства пищевых продуктов.

Эта область научных интересов имеет центральное значение для развития технологии переработки белка в новые формы пищи.

Таблица 3.1-Физико-химические свойства протеиногенных L- α- аминокислот

Название (тривиальное и рациональное) Сокращённое обозначение Удельное вращение в водном растворе 25оС [α]д Константа кислотной диссоциации Изоэлектрическая точка рI Растворимость при 25оС, г на 100г воды
рК1 рК2 рК3
               
1. Моноаминокарбоновые
1.1.Глицин (α-аминоуксусная) Gly - - - - 5,970 24,990
1.2. Аланин (α-аминопропионовая кислота) Ala +1,8 2,35 9,87 - 6,000 16,510
1.3. Валин (α-аминоизовалериановая кислота) Val + 6,6 2,32 9,62 - 6,000 7,040
1.4. Лейцин (α-аминоизокапроновая кислота) Leu - 11,0 2,36 9,60 - 6,000 0,990
1.5.Изолейцин (α-амино-β-метил-Н-валериановая кислота) Ile + 12,4 2,26 9,62 - 5,900 2,230

Продолжение таблицы

Название (тривиальное и рациональное) Сокращённое обозначение Удельное вращение в водном растворе 25оС [α]д Константа кислотной диссоциации Изоэлектрическая точка рI Растворимость при 25оС, г на 100г воды
рК1 рК2 рК3
1.6. Тирозин Tyr + 11,8 2,20 9,21 10,16 7,300 0,035
1.7.Фенилаланин (α-амино-β-фенилпропионовая кислота) Phe - 34,5 2,20 9,31 - 3,500 1,420
2.Моноаминодикарбоновые
2.1.Аспарагиновая (α-аминоянтарная кислота) Asp + 6,7 1,88 3,65 9,00 2,800 0,500
2.2.Лизин (α,ε-диаминокарбоновая кислота) Lys + 13,5 2,20 8,90 10,28 9,700 -
2.3.Аргинин (α-амино-δ-гуанидо-валериановая кислота) Arg 12,5 2,18 9,09 13,20 10,90 -
3.Гидрокислоты
3.1.Серин (α-амино- β-оксипропионовая кислота) Ser - 7,9 2,21 9,35 - 5,700 5,030
3.2.Треонин (α-амино- β-оксимасляная кислота) Thr -28,5 2,15 9,12 - 5,800 20,500
                 

 

 

Продолжение таблицы

Название (тривиальное и рациональное) Сокращённое обозначение Удельное вращение в водном растворе 25оС [α]д Константа кислотной диссоциации Изоэлектрическая точка рI Растворимость при 25оС, г на 100г воды
рК1 рК2 рК3
4.Тиаминооксикислоты
4.1.Цистеин (α-амино- β-меркапто-пропионовая кислота) Cys -16,5 1,71 8,33 10,78 5,000 -
4.2.Цистеин (3,3-ди-тио-бис-2аминопропионовая кислота   (Cys)2 1,4 2,01 8,02 5,00 0,011 -
4.3.Метионин (α-амино-γ-метил-меткаптомасляная кислота) Met - 10,0 2,28 9,21 - 5,700 3,350
5.Гетероциклические аминокислоты
5.1.Триптофан (α-амино- β-индолилпропи-оновая кислота) Trp - 33,7 2,38 9,30 - 5,900 1,140
5.2.Гистидин (α-амино- β-имидозолилпропионовая кислота) His - 38,5 1,78 5,97 8,97 7,00 4,290
5.3.Пролин (пирролидин- α-карбоновая кислота) Pro - 86,2 1,99 10,0 - 6,300 12,300
                       

Продолжение таблицы

Название (тривиальное и рациональное) Сокращённое обозначение Удельное вращение в водном растворе 25оС [α]д Константа кислотной диссоциации Изоэлектрическая точка рI Растворимость при 25оС, г на 100г воды
рК1 рК2 рК3
5.4.Гидроксипролин (α-гидроксипирролидин- β-карбоновая кислота) Hyp - 59,6 1,82 9,65 - 5,800 36,110
                 

Исследование белковых фракций современным методами (хроматография, электрофорез, ультрацентрифугирование, полярография) показали, что они являются гетерогенными и состоят из субфракций, компонентов и субкомпонентов.

Белковые фракции сортов, их биотипов различаются по числу субфракций, компонентов и их соотношению. Субфракции и компоненты имеют специфический аминокислотный состав.

Все методы определения белковых веществ основаны на свойствах и составе белокобразующих аминокислот. Классификация методов представлена на рисунке 3.2

Присутствие белка в пищевых объектах устанавливается с помощью качественных реакций, которые условно разделяют на две группы: цветные реакции и реакции осаждения.

Среди первой группы наиболее распространёнными реакциями является биуретовая реакция на пептидную (амидную) связь (реакция Пиотровского) и нингидриновая реакция на α – аминокислоты, а также специфические, обусловленные присутствием в белках остатков определённых аминокислот. По результатам специфических реакций ориентировочно можно судить о пищевой ценности белков.

Суть реакции Пиотровского состоит в том, что благодаря присутствию в молекуле белка пептидной связи (-СО-NH-) амидная связь реагирует с раствором гидроксида меди, жидкость окрашивается в фиолетово-синий или фиолетово-красный цвет.

 

 
 
Методы определения белков


Качественное и количественное

       
   

 


Качественные Количественные

           
     
 


цветные осаждения Без минерализации с минера-

лизацией

метод Биуретовый методы, методы метод Лоури метод основанные УФ- Къельдаля

на связывании спектро-

красителей скопии

 

Рисунок 3.2 – Методы определения белка

 

Для наблюдения реакции в пробирки наливают по 1-2см3 белка с равным количеством 4 % раствора щёлочи и добавляют 1-2 капли 0,5% раствора медного купороса.

Реакцию дают все белки, а так же продукты их гидролиза -пептоны и пептиды, начиная с тетрапептидов.

Другой качественной реакцией на белки, содержащие α – аминокислоты является нингидриновая реакция. Нингидрин в концентрации 0,1 % реагирует с равным объёмом раствора белка NН2- группами, содержащимися в α – положении при нагревании с последующим охлаждением придаёт системам синее окрашивание.

Существуют также частные реакции на белки, связанные с присутствием фенольных и гетероциклических групп.

Во второй группе реакций белки осаждают действием солей, органических растворителей, концентрированных кислот, щелочей, ионов тяжёлых металлов, температуры и в изоэлектрической точке. Белки в растворённом состоянии крайне неустойчивы, поэтому при добавлении органических растворителей (спирт, ацетон), концентрированных растворов нейтральных солей щелочных металлов и воздействий физических факторов (нагревание, облучение, ультразвук) гидратная оболочка разрушается и они выпадают в осадок.

Так как белковые вещества сырья (муки, крупы, молока, мяса), включая ферменты, часто являются определяющими в обеспечении качества пищевых изделий, то для изучения физико-химических, биохимических и физиологических свойств этих соединений обязательным условием является получение белков в индивидуальном и, по возможности, неденатурированном состоянии. Белки обычно теряют природные (нативные) свойства (растворимость, гидратацию, ферментативную активность и т.д.), подвергаясь денатурации под влиянием различных факторов.

Наиболее распространённым количественными методами являются метод Кьельдаля, Лоури с реактивом Фолина, Войвуда в модификации Т.А. Глагоревой, К.А. Мерка.

Содержание белка в пищевых объектах обычно определяют по количеству азота с использованием метода Кьельдаля. С целью упрощения и сокращения длительности анализа этот метод с момента его разработки (1983) неоднократно модифицировался с применением различных катализаторов и условий минерализации. На основе модифицированных методов созданы высокопроизводительные автоматические анализаторы типа «Кьельфос», стоимость определения содержания белка на которых и сегодня остаётся высокой.

Метод основан на минерализации навесок при нагревании с концентрированной серной кислотой в присутствии катализаторов. Аммиак отгоняют в раствор борной кислоты и оттитровывают его 0,1н. раствором серной кислоты. Объём кислоты, пошедший на титрование, умножают на титр по азоту и узнают содержание азота в пробе.

Химическая реакция аммиака с борной кислотой идёт с образованием метаборной кислоты из ортоборной (Н3ВО3 НВО2+ Н2О). Сама борная кислота очень слабая и не оказывает влияния на концентрацию ионов водорода. Реакция идёт следующим образом: NH3 + HBO2 = NH4+ + BO2-. Полученный в результате анион ВО2-оттитровывают раствором кислоты; при этом происходит восстановление протона в боррат-анион (основание): Н+ + ВО2- = НВО2. Анион ВО2 является сильным основанием и, следовательно, его можно титровать сильной кислотой.

Существует и некоторая условность в методе Кьельдаля при расчёте количества белка, заключающаяся в использовании переводного коэффициента. Однако, несмотря на недостатки, метод Кьельдаля является унифицированным, он включён в ГОСТы на многие пищевые продукты.

Для перевода количества азота в содержание белка используют коэффициент 6,25. Принят он потому, что большинство белков содержит 16 % азота (100:6,25 = 16). Однако более правильным является использование коэффициентов, соответствующих фактическому содержанию сырого белка в каждом его виде. Так, для пшеницы получен коэффициент 5,7, так как её белки содержат 17,5 % азота. Для других белковых ресурсов коэффициенты перевода приняты следующими: 5,7 – рожь, ячмень, овёс, семена подсолнечника; 5,8 – соя; 6,25 – кукуруза, мясо; 6,38 – молоко.

Колориметрический метод определения белка (Метод Лоури) основан на реакции белков с реактивом Фолина, дающей синее окрашивание. Интенсивность окраски определяют на фотоэлектроколориметре с красным светофильтром (или на спектрофотометре при длине волны 750 нм). Количество белка в растворе находят по калибровочной кривой. Метод применяют для определения белка в растворах с концентрацией от 10 до 100мкг.

В основе биуретового метода лежит биуретовая реакция. По оптической плотности с использованием калибровочных графиков находят концентрацию белка в растворах. Этот метод определения белка требует для выполнения доступных реактивов и используется для определения белков в растворах, в том числе предназначенных для электрофореза.

Имеются различные методы определения азота, такие как метод Дюма, нейтронно-активационный и с фенолятгипохлоридом на приборе «Техникон». Принцип метода Дюма заключается в разложении органического соединения в атмосфере оксида углерода до газообразного состояния с последующим измерением объёма азота (N2). В нейтронно-активационном методе атомы азота образца бомбардируются нейтронами в ядерном реакторе с получением изотопа 13N. Содержание белка рассчитывают по количеству гамма-лучей.

Широкое распространение получил метод инфракрасной спектроскопии, в основе которого лежит поглощение белками света с определённой длиной волны и измерение интенсивности его отражения в пробах анализаторах. Приборы калибруют по образцам зерна (эталонам) с известным содержанием белка, определяемым по методу Кьельдаля.

 

Известны методы количественного определения белка, основанные на различной степени помутнения (нефелометрический метод), способности белков адсорбировать красители (кумасси синий R-250, амидочёрный и др.) и преломлять лучи света (по показателю преломления). Они характеризуются высокой точностью и простотой определения, хотя имеют ряд ограничений. Наиболее удобными являются методы с кумасси синим, биуретовый и Лоури.

Массовую долю белка определяют также колориметрическим методом, который основан на способности белков при рН ниже изоэлектрической точки связывать кислые красители вследствие образования нерастворимого комплекса. При этом интенсивность окраски раствора уменьшается обратно пропорционально количеству белка. После удаления нерастворимого комплекса измеряют оптическую плотность раствора оставшегося красителя и по градуировочному графику определяют массовую долю белка.

Определение массовой доли белков методом формольного титрования. Этот метод применяют для контроля массовой доли белка в молоке кислотностью не более 22оС. Он основан на реакции щелочных аминогрупп белка с формалином, в результате которой высвобождаются карбоксильные кислые группы белка. При этом повышается титруемая кислотность молока. По приросту которой определяют массовую долю белка в молоке.

Для определения массовой доли белка в молоке применяют также рефрактометрический метод. Он основан на изменении показателей преломления молока и безбелковой молочной сыворотки, полученной из того же образца молока, разность между которыми пропорциональна массовой доле белка в молоке.

При изучении физико-химических свойств белков и их превращении в пищевых системах широко используют методы фракционирования и очистки от небелковых соединений. Они основаны на различии таких свойств белков, как размер молекул, растворимость заряд и сродство к специфическим химическим группам.

Общая схема операций по выделению белков сводится к измельчению биологического материала (гомогенизации), экстрагирования и собственно выделению, то есть очистки и получению белка в индивидуальном состоянии.

Осаждение белков из раствора под действием солей щелочных и щелочноземельных металлов называют высаливанием. Для высаливания чаще применяются сульфат аммония, под влиянием которого белки, как правило, сохраняют растворимость и ферментативную активность.

Глобулины выпадают в осадок при 50 % насыщении, альбумины при 100 % насыщении растворов солей, а при ступенчатом фракционировании (20-100 % насыщения) выпадают белки и других классов (проламины, глютелины).

В практике выделения и очистки белков используются различные типы хроматографии: адсорбционная, распределительная, ионообменная и хроматография по сродству.

Адсорбционнная хроматография основана на различиях в полярности белков. В колонке вместе с буферным раствором упаковывают адсорбент, на который в небольшом объёме растворителя наносят исследуемый образец. Компоненты разделяемой смеси адсорбируются, затем элюируются с помощью буферного раствора с увеличивающейся концентрацией или полярностью. Фракции белка собирают с помощью автоматического коллектора фракций.

В распределительной хроматографии, в отличие от адсорбционной, в качестве неподвижной фазы выступает водный слой, удерживаемый твёрдой фазой (силикагель, бумага). Разделяемые вещества многократно распределяются между водным слоем и движущейся фазой растворителя и с разной скоростью перемещаются по длине колонки или бумаге. Распределительную хроматографию на бумаге часто используют для анализа пептидов и аминокислот. Адсорбентом служат нити целлюлозы, а растворителем – смесь органических растворителей, например: бутиловый спирт – уксусная кислота – вода. Хроматограмму проявляют, высушивают и анализируют местонахождение разделяемых компонентов тем или иным способом.

Методом ионообменной хроматографии белки или аминокислоты разделяют на основе различий в общем заряде молекул. Если белок в нейтральной среде (рН 7) имеет положительный заряд, то он связывается на колонке с ионообменником, содержащим фенольные, сульфо- и карбоксильные группы (катионообменник). Чаще всего для фракционирования белков используют производные полистерола и целлюлозы.

Положительно заряженный белок снимается с колонки с помощью раствора хлористого натрия или изменением рН элюирующего буфера. При этом ионы натрия конкурируют с положительно заряженными группами белков. Белки с меньшим положительным зарядом вымываются с колонки первыми, с большим зарядом – последними.

Хроматография по сродству (аффинная хроматография) основана на принципе избирательного связывания белков со специфическими веществами (лигандами) прикреплёнными к носителю. Лиганды (глюкозу) ковалентно присоединяют к носителю (проводя иммобилизацию) и наносят на колонку исследуемую белковую смесь. Несвязавшиеся белки удаляют соответствующим буфером, а нужный белок элюируют раствором, содержащим лиганд в очень высокой концентрации. При этом присоединённые к колонке остатки глюкозы в молекуле белка замещаются на глюкозу, находящуюся в растворе.

Гель-фильтрация, или метод молекулярных сит заключается в пропускании белков через колонку с гелем сефадекса или других типов (агарозных, полистирольных). Применяются также пористые стеклянные шарики и пористый кварц (порасил).

Принцип методов электрофоретического разделения заключается в способности молекул пептидов и аминокислот, находясь в заряженной форме в виде катионов (+) или анионов (-), передвигаться в электрическом поле с определённой скоростью.

Очень высокую разрешающую способность имеет метод изоэлектрического фокусирования белков, в основе которого лежит фронтальный электрофорез, проводимый на колонке одновременно в градиенте рН и напряжения.

В организме синтезируется только часть аминокислот, другие должны доставляться с пищей. Первые из них называются заменимыми, вторые незаменимыми. Заменимые аминокислоты способны заменять одна другую в рационе, так как они превращаются одна в другую или синтезируются из промежуточных продуктов углеводного или липидного обмена.

Жизнедеятельность человека обеспечивается ежедневным потреблением с пищей сбалансированной смеси, содержащей восемь незаменимых аминокислот и две частичнозаменимые. Незаменимые представлены аминокислотами с разветвлённой цепью углерода – лейцином, изолейцином и валином, ароматическими – фенилаланином, триптофаном и алифатическими – треонином, лизином и метионином. К частичнозаменимым относят аргинин и гистидин, так как в организме они синтезируются довольно медленно.

Важным понятием, характеризующим качество поступающего в организм белка, является биологическая ценность, то есть наличие незаменимых аминокислот и степень их усвоения. Чем ближе потребляемый белок по аминокислотному составу подходит к составу белков организма, тем выше его биологическая ценность.

Изучение химического состава пищевых продуктов, закономерностей метаболических превращений в организме каждого из многочисленных белковых веществ, входящих в состав продукта, выявление их участия в жизнедеятельности, а также интегрального биологического эффекта, привело к возникновению научных представлений о биологической ценности, под которой понимают относительную степень задержки азота пищи или эффективность его утилизации для поддержания азотистого равновесия, зависящая от аминокислотного состава и других структурных особенностей белков. Таким образом, термин «биологическая ценность» отражает качество белковых компонентов продукта, связанных как с перевариванием белка, так и со степенью сбалансированности его состава. Биологическая ценность может быть определена химическими и биологическими методами (например, с использованием тест-организмов).

Основываясь на понятии биологической ценности как степени соответствия состава пищи физиологическим потребностям организма, разработаны некоторые принципы биологической оценки качества продуктов питания.

Большинство исследований пришло к единому мнению, что биологическую ценность белков, независимо от использованного варианта проведения эксперимента или метода её расчёта необходимо выражать не в абсолютных, а в относительных величинах (в процентах) то есть в сравнении с аналогичными показателями, полученными с применением стандартных белков.

Химические методы исследования биологической ценности белков разрабатывались на основании результатов изучения состава белков в пищевых продуктах и установленной связи между степенью задержки азота, пищевого белка в живом организме и наличием в нём незаменимых аминокислот.

Наиболее широко используется метод Х. Митчела и Р. Блока, в соответствии с которым рассчитывается показатель аминокислотного скора (а.с.). Скор выражают в процентах или безразмерной величиной, представляющей собой отношение содержания аминокислот (а.к.) в исследуемом белке к её количеству в эталонном белке. При расчёте скора формула выглядит следующим образом:

 

Аминокислотный скор = , (3.8)

 

Аминокислота, скор который имеет самое низкое значение, называется лимитирующей аминокислотой.

Таблица 3.2 Содержание аминокислот в 1 г идеального белка

Аминокислота Содержание, мг Аминокислота Содержание, мг
Изолейцин   Фенилаланин+тирозин  
Лейцин   Треонин  
Метионини + цистин   Триптофан  
Валин   Всего  

Другой метод определения биологической ценности белков заключается в определении индекса незаменимых аминокислот (ИНАК). Метод представляет собой модификацию метода аминокислотного скора и позволяет учитывать количество всех незаменимых кислот. Индекс рассчитывают по формуле:

 

ИНАК = , (3.9)

 

где n – число аминокислот;

индексы б, э – содержание аминокислоты в изучаемом и эталоном белке соответственно.

Известны и другие химические методы, которые основаны на исследовании аминокислотного состава белка с последующим расчётом индексов биологической ценности (индексы Озера, Митчела, Корпачи).

Вышеперечисленные методы индексов и скора по стандарту, не позволяют учитывать одну из важнейших характеристик биологической ценности белка, а именно, доступность усвоения в организме аминокислот, входящих в его состав. Например, количество доступного лизина является в настоящее время наиболее ценным показателем «технологического» снижения биологической ценности белков. В литературе описаны различные способы определения доступного лизина в белковых продуктах: химические, биологические и микробиологические.

Особый интерес вызывают у исследователей такие методы определения биологической ценности белков, в которых в какой либо степени имитируются условия пищеварения в организме человека. Метод ферментативного переваривания белков протеолитическими ферментами желудочно-кишечного тракта применяется для изучения скорости расщепления белков, находящихся в составе различных пищевых продуктов.

Для изучения биологической ценности белков наибольшее применение получили биологические методы исследования, результаты которых служат основой для сравнения с данными, полученными при использовании химических методов.

Биологические методы основаны на скармливании изучаемого белка живому организму с последующим выявлением его реакции. Основными показателями оценки при этом являются привес (рост животных) за определённый период времени, расход белка и энергии на единицу привеса, коэффициенты перевариваемости и отложения азота в теле, доступность аминокислот. Биологические методы исследования биологической ценности белков можно классифицировать на росто-весовые и балансовые. Эти методы широко используют для определения различных индексов биологической ценности белков.

Росто-весовые методы основаны на учёте прибавки веса тела на единицу потреблённого белка за определённое время.

Наибольшее распространение получили, разработанные П.Осборном, методы определения коэффициента эффективности белка (КЭБ или PER), которым определяют прибавку веса тела на один грамм потреблённого белка за экспериментальный период. Для сравнения при определении показателя используют контрольную группу животных со стандартным белком – казеином. В количестве, обеспечивающем в рационе 10% белка. Методика определения КЭБ признана оригинальной в ряде стран (США, Канада).

Балансовые методы исследования биологической ценности белка основаны на определении различных реакций организма на потребляемый белок. Методы определения биологической ценности белков, основанные на данных балансовых исследований, считают наиболее точными из всех предложенных.

В настоящее время в исследовательских целях используют метод с реснитчатой инфузорией Tetrahimenapyriformis. Метод был разработан S.A. Stott и H. Smith.

Однако наибольшее распространение получил модифицированный метод определения относительной биологической ценности. В отличие от общепринятого метода Стотта и Смита предлагаемый метод значительно проще и дешевле, производительнее и легко доступен любым лабораториям, которые имеют самый необходимый минимум для проведения микробиологических исследований. Модификация сводится к следующему:

1. Используемые в анализе витамины и нуклеотиды заменяются дрожжевым экстрактом, а соли – морской солью.

2. В 10 раз уменьшается количество всех компонентов анализа (величина навески исследуемого продукта, объём инокулята и т.д.).

3. Вместо специальных плоскодонных колб Элрленмеера, занимающих много места в термостате, что существенно ограничивает производительность анализа, используются флаконы из-под антибиотиков с резиновой пробкой, имеющей срез внутреннего валика для аэрации среды. Флаконы размещают в штативе, что значительно облегчает все манипуляции с пробами.

4.Используемый в заключительной стадии опыта раствор формалина для фиксации инфузорий вносится непосредственно во флаконы и из них уже берётся взвесь для подсчёта клеток.

Сущность метода заключается в термостатировании флаконов микрофлоры с исследуемыми образцами продуктов (мясных, овощных, молочных и др.) и фиксируют инфузории йодноспиртовым раствором или раствором формалина. Относительная биологическая ценность продукта определяется отношением числа выросших на опытном продукте к числу инфузорий, выросших на контрольном продукте, умноженном на 100.

Изложенный выше метод был использован для определения биологической ценности пищевых продуктов прошедших тепловую обработку и некоторой готовой продукции. Полученные данные позволили предложить ряд рекомендаций для рационализации технологических процессов производства продуктов.

Результаты исследований по определению влияния способов тепловой обработки на биологическую ценность овощей приведены в таблице 3.3.

 

 

Таблица 3.3 - Влияние тепловой обработки на биологическую ценность овощей

Наименование продукта Общий азот в % (на абсолютно сухое вещество) ОБЦ по отношению к внутреннему стандарту Потери в % по отношению к внутреннему стандарту
Капуста белокочанная свежая сырая варёная варёная с солью тушёная тушёная с солью Капуста квашенная сырая варёная тушёная Картофель сырой очищенный варёный целым клубнем в воде варёный на пару варёный в кожице в воде   2,73 2,16 2,25 1,75 2,20   2,57 2,20 2,49   1,75 1,30   1,24   1,4   100,0 129,97 122,57 125,84 112,94   94,66 125,51 92,84   100,0 121,36   137,76   108,51   - 29,57 22,57 25,84 12,94   5,34 25,51 7,16   - 21,36   37,70   8,51

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-12-29 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: