На тепловых электростанциях преобразуется химическая энергия топлива сначала в механическую, а затем в электрическую.




Назначение и основные типы электростанций

.

Наиболее удобным из известных в настоящее время видов энергии является электроэнергия, которая по праву может считаться основой индустриальной цивилизации. Она обладает уникальным комплексом свойств, которые делают ее незаменимой как в производстве, так и в повседневной жизни человека. Во-первых, электроэнергия универсальна, то есть может использоваться в самых различных целях. С помощью несложных приборов и устройств ее можно преобразовать в механическую, тепловую, электромагнитную и химическую энергию. Во-вторых, электроэнергию относительно легко передавать на большие расстояния и распределять между потребителями, а учет ее расхода реализуется на базе простых, недорогих и обладающих при этом высокой точностью измерительных приборов. Еще одним ценным достоинством электрической энергии является возможность бесконечного дробления и концентрировании ее мощности, изменения напряжения и других рабочих параметров.

Количество потребляемой в мире электроэнергии стабильно увеличивается, причем темпы роста электропотребления превышают темпы роста потребления первичных энергоресурсов. Это вызвано указанными преимуществами электроэнергии, которые приводят к постепенному вытеснению других видов энергии, в частности органического топлива и тепловой энергии, из структуры энергоносителей, используемых конечными потребителями, и обеспечивается появлением новых и совершенствованием существующих способов производства электроэнергии.

Основная часть электроэнергии вырабатывается централизованно на электростанциях. Электростанцией называется совокупность установок, оборудования и аппаратуры, используемых непосредственно для производства электрической энергии, а также необходимые для этого сооружения и здания, расположенные на определенной территории. Выработка электроэнергии на электростанциях осуществляется путем преобразования первичной энергии (энергии, заключенной в первичных энергоресурсах). При этом традиционная энергетика базируется на использовании соответственно традиционных ПЭР: гидроэнергии крупных рек, ресурсов органического и ядерного топлива. Для использования различных видов ПЭР применяются разные типы электростанций; в названии типа обычно содержится указание на источник первичной энергии, например:

- ТЭС – тепловая электростанция вырабатывает электроэнергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива;

- АЭС – атомная электростанция вырабатывает электроэнергию путем преобразования энергии ядерного топлива;

- ГЭС – гидравлическая электростанция преобразует гидравлическую энергию (механическую энергию движения воды) в электроэнергию.

Указанные типы станций составляют основу современной электроэнергетики и обеспечивают более 95 % мировых потребностей в электроэнергии.

Тепловые электростанции

 

Тепловая электростанция (ТЭС), электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива.

На тепловых электростанциях преобразуется химическая энергия топлива сначала в механическую, а затем в электрическую.

Топливом для ТЭС могут служить уголь, торф, газ, горючие сланцы, мазут. Тепловые электрические станции подразделяют на конденсационные (КЭС), предназначенные для выработки только электрической энергии, и теплоэлектроцентрали (ТЭЦ), производящие кроме электрической тепловую энергию в виде горячей воды и пара. Крупные КЭС районного значения получили название государственных районных электростанций (ГРЭС).

Простейшая принципиальная схема КЭС, работающей на угле, представлена на рис. 3.1. Уголь подается в топливный бункер 1, а из него – в дробильную установку 2, где превращается в пыль. Угольная пыль поступает в топку парогенератора (парового котла) 3, имеющего систему трубок, в которых циркулирует химически очищенная вода, называемая питательной. В котле вода нагревается, испаряется, а образовавшийся насыщенный пар доводится до температуры 400 – 650 °С и под давлением 3 – 24 МПа поступает по паропроводу в паровую турбину 4.

Рис. 3.1. Принципиальная схема КЭС, работающей на угле

Основное оборудование: котел-парогенератор – ПГ,

турбина – Т, генератор – Г, конденсатор – К, насос – Н

 

 

Параметры пара зависят от мощности агрегатов.

В котле при сжигании топлива, выделяется тепловая энергия, которая преобразуется во внутреннюю энергию водяного пара (в зависимости от мощности ТЭС могут получать пар давлением более 200 атм. и с температурой более 550 °С). В турбине Т водяная энергия пара преобразуется в механическую энергию вращения ротора турбины. Вал турбины соединен с валом электрогенератора Г, в котором механическая энергия вращения ротора преобразуется в электрическую энергию. При расширении в турбине пар теряет давление и температуру. На выходе из турбины пар имеет температуру около 25 °С и давление порядка 0,04 атм. Для того, чтобы вернуть этот пар в рабочий цикл, его конденсируют в конденсаторе К и полученную воду насосом Н, повышая давление до рабочего (200 атм.), возвращают в котел-парогенератор.

 

 

В турбине способ преобразования тепловой энергии пара в механическую состоит в следующем. Пар высокого давления и температуры, имеющий большую тепловую энергию, из котла поступает в сопла турбины. Сопла – это неподвижно укрепленные, не вращающиеся вместе с валом турбины, выполненные из металла каналы, в которых температура и давление пара уменьшаются, а значит, уменьшается и его тепловая энергия, но зато возрастает скорость движения потока пара.

Таким образом, за счет уменьшения тепловой (внутренней, потенциальной) энергии пара возрастает его механическая (кинетическая) энергия. Струя пара с высокой скоростью вытекает из сопел и поступает на рабочие лопатки турбины, укрепленные на диске, жестко связанном с валом. Вал, диск и рабочие лопатки вращаются совместно с большой скоростью (3000 об./мин). Скорость потока пара на рабочих лопатках, его механическая энергия уменьшается следующим образом. Канал между рабочими лопатками криволинеен. Поток пара, протекая по криволинейному каналу, меняет направление и величину скорости. При этом он оказывает давление на вогнутые поверхности лопаток. Вследствие этого рабочие лопатки, диск, вал – весь ротор приходит во вращение.

Тепловые конденсационные электростанции имеют невысокий КПД (30 – 40 %), так как большая часть энергии теряется с отходящими топочными газами и охлаждающей водой конденсатора.

Теплоэлектроцентраль (ТЭЦ) отличается от конденсационной станции (КЭС) установленной на ней специальной теплофикационной турбиной с отбором пара. На ТЭЦ одна часть пара полностью используется в турбине для выработки электроэнергии в генераторе 5 (см. рис. 3.1) и затем поступает в конденсатор 6, а другая, имеющая большую температуру и давление (на рисунке отображено штри­ховой линией), отбирается от промежуточной ступени турбины и используется для теплоснабжения. Конденсат насосом 7 через деаэратор 8 и далее питательным насосом 9 подается в парогенератор. Количество отбираемого пара зависит от потребности предприятий в тепловой энергии.

Коэффициент полезного действия ТЭЦ достигает 60 – 70 %.

Такие станции строят обычно вблизи потребителей – промышленных предприятий или жилых массивов. Чаще всего они работают на привозном топливе.

Рассмотренные тепловые электростанции по виду основного теплового агрегата – паровой турбины – относятся к паротурбинным станциям. Значительно меньшее распространение получили тепловые станции с газотурбинными (ГТУ), парогазовыми (ПГУ) и дизельными установками.

Наиболее экономичными являются крупные тепловые паротурбинные электростанции (сокращенно ТЭС). Большинство ТЭС нашей страны используют в качестве топлива угольную пыль. Для выработки 1 кВт×ч электроэнергии затрачивается несколько сот граммов угля. В паровом котле свыше 90 % выделяемой топливом энергии передается пару. В турбине кинетическая энергия струй пара передается ротору. Вал турбины жестко соединен с валом генератора.

Современные паровые турбины для ТЭС — весьма совершенные, быстроходные, высокоэкономичные машины с большим ресурсом работы. Их мощность в одновальном исполнении достигает 1 млн. 200 тыс. кВт, и это не является пределом. Такие машины всегда бывают многоступенчатыми, т. е. имеют обычно несколько десятков дисков с рабочими лопатками и такое же количество, перед каждым диском, групп сопел, через которые протекает струя пара. Давление и температура пара постепенно снижаются.

Из курса физики известно, что КПД тепловых двигателей увеличивается с ростом начальной температуры рабочего тела. Поэтому поступающий в турбину пар доводят до высоких параметров: температуру – почти до 550 °С и давление – до 25 МПа. Коэффициент полезного действия ТЭС достигает 40 %. Большая часть энергии теряется вместе с горячим отработанным паром.

 

К сожалению, запасы нефти, газа, угля отнюдь не бесконечны. Природе, чтобы создать эти запасы, потребовались миллионы лет, израсходованы они будут за сотни лет. Сегодня в мире стали всерьез задумываться над тем, как не допустить хищнического разграбления земных богатств. Как сказал великий русский ученый Д.И. Менделеев: «Топить нефтью – все равно, что топить ассигнациями».

Гидроэлектростанции

 

Гидроэлектрическая станция, гидроэлектростанция (ГЭС), комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию. ГЭС состоит из последовательной цепи гидротехнических сооружений, обеспечивающих необходимую концентрацию потока воды и создание напора, и энергетического оборудования, преобразующего энергию движущейся под напором воды в механическую энергию вращения, которая, в свою очередь, преобразуется в электрическую энергию. Напор ГЭС создается концентрацией падения реки на используемом участке плотиной (рис. 3.3), либо деривацией (рис. 3.4), либо плотиной и деривацией совместно. Основное энергетическое оборудование ГЭС размещается в здании ГЭС: в машинном зале электростанции – гидроагрегаты, вспомогательное оборудование, устройства автоматического управления и контроля; в центральном посту управления – пульт оператора-диспетчера или автооператор гидроэлектростанции.

Повышающая трансформаторная подстанция размещается как внутри здания ГЭС, так и в отдельных зданиях или на открытых площадках. Распределительные устройства зачастую располагаются на открытой площадке. Здание ГЭС может быть разделено на секции с одним или несколькими агрегатами и вспомогательным оборудованием, отделенные от смежных частей здания.

 

Рис. 3.3. Схема концентрации падения реки плотиной: ВБ – верхний бьеф; НБ – нижний бьеф; Нб – напор брутто Рис. 3.4. Схема концентрации падения реки деривацией (подводящей): ВБ – верхний бьеф; НБ – нижний бьеф; Нб – напор брутто

 

При здании ГЭС или внутри него создается монтажная площадка для сборки и ремонта различного оборудования, вспомогательных операций по обслуживанию ГЭС.

По установленной мощности (в МВт) различают ГЭС мощные (св. 250), средние (до 25) и малые (до 5). Мощность ГЭС зависит от напора Нб (разности уровней верхнего и нижнего бьефа), расхода воды, используемого в гидротурбинах, и КПД гидроагрегата. По ряду причин (вследствие, например сезонных изменений уровня воды в водоемах, непостоянства нагрузки энергосистемы, ремонта гидроагрегатов или гидротехнических сооружений и т. п.) напор и расход воды непрерывно меняются. Кроме того, меняется расход при регулировании мощности ГЭС. Различают годичный, недельный и суточный циклы режима работы ГЭС.

По максимально используемому напору ГЭС делятся на высоконапорные (более 60 м), средненапорные (от 25 до 60 м) и низконапорные (от 3 до 25 м). На равнинных реках напоры редко превышают 100 м, в горных условиях посредством плотины можно создавать напоры до 300 м и более, а с помощью деривации – до 1500 м. Классификация по напору приблизительно соответствует типам применяемого энергетического оборудования: на высоконапорных ГЭС применяют ковшовые и радиально-осевые турбины с металлическими спиральными камерами; на средненапорных – поворотнолопастные и радиально-осевые турбины с железобетонными и металлическими спиральными камерами, на низконапорных – поворотнолопастные турбины в железобетонных спиральных камерах, иногда горизонтальные турбины в капсулах или в открытых камерах. Подразделение ГЭС по используемому напору имеет приблизительный, условный характер.

По схеме использования водных ресурсов и концентрации напоров ГЭС обычно подразделяют на русловые, приплотинные, деривационные с напорной и безнапорной деривацией, смешанные, гидроаккумулирующие и приливные. В русловых и приплотинных ГЭС напор воды создается плотиной, перегораживающей реку и поднимающей уровень воды в верхнем бьефе. При этом неизбежно некоторое затопление долины реки. В случае сооружения двух плотин на том же участке реки площадь затопления уменьшается. На равнинных реках наибольшая экономически допустимая площадь затопления ограничивает высоту плотины. Русловые и приплотинныс ГЭС строят и на равнинных многоводных реках и на горных реках, в узких сжатых долинах.

В состав сооружений русловой ГЭС, кроме плотины, входят здание ГЭС и водосбросные сооружения. Состав гидротехнических сооружений зависит от высоты напора и установленной мощности. У русловой ГЭС здание с размещенными в нем гидроагрегатами служит продолжением плотины и вместе с ней создает напорный фронт. При этом с одной стороны к зданию ГЭС примыкает верхний бьеф, а с другой – нижний бьеф. Подводящие спиральные камеры гидротурбин своими входными сечениями закладываются под уровнем верхнего бьефа, выходные же сечения отсасывающих труб погружены под уровнем нижнего бьефа.

В соответствии с назначением гидроузла в его состав могут входить судоходные шлюзы или судоподъемник, рыбопропускные сооружения, водозаборные сооружения для ирригации и водоснабжения. В русловых ГЭС иногда единственным сооружением, пропускающим воду, является здание ГЭС. В этих случаях полезно используемая вода последовательно проходит входное сечение с мусорозадерживающими решетками, спиральную камеру, гидротурбину, отсасывающую трубу, а по специальным водоводам между соседними турбинными камерами производится сброс паводковых расходов реки. Для русловых ГЭС характерны напоры до 30 – 40 м к простейшим русловым ГЭС относятся также ранее строившиеся сельские ГЭС небольшой мощности. На крупных равнинных реках основное русло перекрывается земляной плотиной, к которой примыкает бетонная водосливная плотина и сооружается здание ГЭС. Такая компоновка типична для многих российских ГЭС на больших равнинных реках. Волжская ГЭС – наиболее крупная среди станций руслового типа.

При более высоких напорах оказывается нецелесообразным передавать на здание ГЭС гидростатическое давление воды. В этом случае применяется тип плотинной ГЭС, у которой напорный фронт на всем протяжении перекрывается плотиной, а здание ГЭС располагается за плотиной, примыкает к нижнему бьефу (рис. 3.6). В состав гидравлической трассы между верхним и нижним бьефом ГЭС такого типа входят глубинный водоприемник с мусорозадерживающей решеткой, турбинный водовод, спиральная камера, гидротурбина, отсасывающая труба. В качестве дополнительных сооружений в состав узла могут входить судоходные сооружения и рыбоходы, а также дополнительные водосбросы Примером подобного типа станций на многоводной реке служит Братская ГЭС на реке Ангара (РФ).

 

 

Рис. 3.6. План Саянского узла

 

По характеру использования воды и условиям работы различают ГЭС на бытовом стоке без регулирования, с суточным, недельным, сезонным (годовым) и многолетним регулированием. Отдельные ГЭС или каскады ГЭС, как правило, работают в системе совместно с конденсационными электростанциями (КЭС), теплоэлектроцентралями (ТЭЦ), атомными электростанциями (АЭС), газотурбинными установками (ГТУ), причем в зависимости от характера участия в покрытии графика нагрузки энергосистемы ГЭС могут быть базисными, полупиковыми и пиковыми.

Важнейшая особенность гидроэнергетических ресурсов по сравнению с топливно-энергетическими ресурсами – их непрерывная возобновляемость. Отсутствие потребности в топливе для ГЭС определяет низкую себестоимость вырабатываемой на ГЭС электроэнергии. Поэтому сооружению ГЭС, несмотря на значительные, удельные капиталовложения на 1 кВт установленной мощности и продолжительные сроки строительства, придавалось и придается большое значение, особенно когда это связано с размещением электроемких производств.

Одни из первых гидроэлектрических установок мощностью всего в несколько сотен Вт были сооружены в 1876 – 81 гг. в Штангассе и Лауфене (Германия), Грейсайде (Англия). Развитие ГЭС и их промышленное использование тесно связано с проблемой передачи электроэнергии на расстояние: как правило, места, наиболее удобные для сооружения ГЭС, удалены от основных потребителей электроэнергии. Протяженность существовавших в то время линий электропередач не превышала 5 – 10 км, самая длинная линия – 57 км.

В России существовали, но так и не были реализованы детально разработанные проекты ГЭС русских ученых Ф.А. Пироцкого, И.А. Тиме, Г.О. Графтио, И.Г. Александрова и др., предусматривавших, в частности, использование порожистых участков рек Днепр, Волхов, Западная Двина, Вуокса и др.

Первая промышленная ГЭС в России мощностью около 0,3 МВт (300 кВт) была построена в 1895 – 96 гг. под руководством русских инженеров В.Н. Николева и Р.Э. Классона для электроснабжения Охтинского порохового завода в Петербурге.

В 60-х гг. прошлого века наметилась тенденция к снижению доли ГЭС в общем мировом производстве электроэнергии и все большему использованию ГЭС для покрытия пиковых нагрузок. К 1970 г. всеми ГЭС мира производилось около 1000 млрд. квт-ч электроэнергии в год. Причем, начиная с 1960 г. доля ГЭС в мировом производстве снижалась в среднем за год примерно на 0,7 %. Особенно быстро снижается доля ГЭС в общем производстве электроэнергии в ранее традиционно считавшихся «гидроэнергетическими» странах (Швейцария, Австрия, Финляндия, Япония, Канада, отчасти Франция), т. к. их экономический гидроэнергетический потенциал практически исчерпан.

 

Атомные электростанции

 

Атомная электростанция (АЭС) – комплекс технических сооружений, предназначенных для выработки электрической энергии путем использования энергии, выделяемой при контролируемой ядерной реакции.

Генератором энергии на АЭС является атомный реактор. Тепло, которое выделяется в реакторе в результате цепной реакции деления ядер некоторых тяжелых элементов, затем так же, как и на обычных тепловых электростанциях (ТЭС), преобразуется в электроэнергию. В отличие от ТЭС, работающих на органическом топливе, АЭС работает на ядерном горючем (в основе 233U92, 235U92, 239Pu94).

 

144Ba56 + 89Kr36 + 3·1n0,

235U92 + 1n0 (3.1)

140Xe54 + 94Sr38 + 2·1n0

 

В результате деления ядра урана, инициированного нейтроном, возникают новые нейтроны, которые вызывают реакции деления других ядер. Реакции подобного типа называются «цепными реакциями».

Ядерное топливо сжигается в реакторах атомных электростанций и теплоцентралей. На рис. 3.7 представлены схемы управляемой ядерной реакции (а) и канального ядерного реактора на тепловых нейтронах (б).

а

Рис. 3.7. Схема управляемой ядерной реакции (а)

и канального ядерного реактора на тепловых нейтронах (б)

 

АЭС по своей сути также является тепловой электростанцией и имеет ту же принципиальную схему. Только вместо котла-парогенератора, в котором сжигается органическое топливо, используется ядерный реактор. Внутриядерная энергия превращается в тепловую энергию пара, которая затем – в механическую энергию вращения турбогенератора и в электрическую энергию. В качестве топлива используется обогащенный уран (основной компонент U235). Он помещается в топливные стержни. Между ними расположены графитовые стержни, с помощью которых контролируется интенсивность распада нейтронов (коэффициент размножения нейтронов). Все это помещено в толстостенную стальную оболочку (затем свинцовая, бетонная защита и т. д.). Водяной пар могут получать непосредственно в реакторе, когда вода омывает топливные элементы и испаряется. Но сейчас обычно используют расплавы щелочных и щелочноземельных металлов, которые циркулируют через реактор и специальные теплообменные аппараты, в которых вырабатывается водяной пар. При этом снижается уровень радиоактивного заражения используемого оборудования. Наличие термодинамического цикла на АЭС ограничивает КПД этой станции, как и обычных тепловых станций. Недостаток АЭС заключается также в отсутствии маневренности: пуск и остановка блоков и агрегатов этих станций требует значительных затрат времени и труда.

Установлено, что мировые энергетические ресурсы ядерного горючего (уран, плутоний и др.) существенно превышают энергоресурсы природных запасов органического топлива (нефть, уголь, природный газ и др.). Это открывает широкие перспективы для удовлетворения быстро растущих потребностей в топливе. Кроме того, необходимо учитывать все увеличивающийся объем потребления угля и нефти для технологических целей мировой химической промышленности, которая становится серьезным конкурентом тепловых электростанций. Несмотря на открытие новых месторождений органического топлива и совершенствование способов его добычи, в мире наблюдается тенденция к относительному, увеличению его стоимости. Это создает наиболее тяжелые условия для стран, имеющих ограниченные запасы топлива органического происхождения. Очевидна необходимость быстрейшего развития атомной энергетики, которая уже занимает заметное место в энергетическом балансе ряда промышленных стран мира. Первая в мире АЭС опытно-промышленного назначения мощностью 5 МВт была пущена в СССР 27 июня 1954 г в г. Обнинске. До этого энергия атомного ядра использовалась в военных целях.

Принципиальная схема АЭС с ядерным реактором, имеющим водяное охлаждение, приведена на рис. 3.8. Тепло, выделяется в активной зоне реактора, теплоносителем, вбирается водой (теплоносителем 1-го контура), которая прокачивается через реактор циркуляционным насосом 2. Нагретая вода из реактора поступает в теплообменник (парогенератор) 3, где передает тепло, полученное в реакторе, воде 2-го контура. Вода 2-го контура испаряется в парогенераторе, и образованный пар поступает в турбину 4.

При работе реактора кон-центрация делящихся изотопов в ядерном топливе постепенно уменьшается, и топливо выгорает. Поэтому со временем их заме-няют свежими. Ядерное горючее перезагружают с помощью меха-низмов и приспособлений с ди-станционным управлением. От-работавшее топливо переносят в бассейн выдержки, а затем направляют на переработку.

К реактору и обслуживающим его системам относятся: собственно реактор с биологической защитой, теплообменники, насосы или газодувные установки, осуществляющие циркуляцию теплоносителя; трубопроводы и арматура циркуляции контура; устройства для перезагрузки ядерного горючего; системы специальной вентиляции, аварийного расхолаживания и др.

Для предохранения персонала АЭС от радиационного облучения реактор окружают биологической защитой, основным материалом для которой служат бетон, вода, песок. Оборудование реакторного контура должно быть полностью герметичным. Предусматривается система контроля мест возможной утечки теплоносителя, принимают меры, чтобы появление неплотностей и разрывов контура не приводило к радиоактивным выбросам и загрязнению помещений АЭС и окружающей местности.

Оборудование реакторного контура обычно устанавливают в герметичных боксах, которые отделены от остальных помещений АЭС биологической защитой и при работе реактора не обслуживаются. Радиоактивный воздух и небольшое количество паров теплоносителя, обусловленное наличием протечек из контура, удаляют из необслуживаемых помещений АЭС специальной системой вентиляции, в которой для исключения возможности загрязнения атмосферы предусмотрены очистные фильтры и газгольдеры выдержки. За выполнением правил радиационной безопасности персоналом АЭС следит служба дозиметрического контроля.

При авариях в системе охлаждения реактора для исключения перегрева и нарушения герметичности оболочек ТВЭЛов предусматривают быстрое (в течение нескольких секунд) глушение ядерной реакции; аварийная система расхолаживания имеет автономные источники питания.

Наличие биологической защиты, систем специальной вентиляции аварийного расхолаживания и службы дозиметрического контроля позволяет полностью обезопасить обслуживающий персонал АЭС от вредных воздействий радиоактивного облучения.

В связи с тем, что теплоноситель и содержащиеся в нем примеси при прохождении через активную зону реактора активируются, конструктивное решение оборудования машинного зала и системы охлаждения конденсатора турбины одноконтурных АЭС должно полностью исключать возможность утечки теплоносителя.

Для труднодоступных районов страны весьма важным могло бы быть строительство малых ядерных электростанций, работающих в автоматическом режиме, а также плавучих атомных электростанций (рис. 3.9).

 

 

Рис. 3.9. Современные необслуживаемые АЭС

 

Будучи наиболее современным видом электростанций, АЭС имеют ряд существенных преимуществ перед другими видами электростанций: при нормальных условиях функционирования они абсолютно не загрязняют окружающую среду, не требуют привязки к источнику сырья и соответственно могут быть размещены практически везде. Новые энергоблоки имеют мощность практически равную мощности средней ГЭС, однако коэффициент использования установленной мощности на АЭС (80 %) значительно превышает этот показатель у ГЭС или ТЭС. Об экономичности и эффективности атомных электростанций может говорить тот факт, что из 1 кг урана можно получить столько же теплоты, сколько при сжигании примерно 3000 т каменного угля.

Значительных недостатков АЭС при нормальных условиях функционирования практически не имеют. Однако нельзя не отметить опасность АЭС при возможных форс-мажорных обстоятельствах: землетрясениях, ураганах, и т. п. – здесь старые модели энергоблоков представляют потенциальную опасность радиационного заражения территорий из-за неконтролируемого перегрева реактора.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-10-25 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: