ОБЩИЕ СВЕДЕНИЯ О ПРОВЕДЕНИИ ЛАБОРАТОРНЫХ РАБОТ




 

Лабораторные работы проводятся в соответствии с данными методическими материалами и руководством по эксплуатации ТМЖ-2В-09-12ЛР-01 РЭ.

Схема стенда ТМЖ-2В-09-12ЛР-01 представлена на рисунке 1. расшифровку обозначений смотри в табл. 1.

Табл. 1.

Состав стенда ТМЖ-2В-09-12ЛР-01

Обозначение Наименование Прим.
Б1 Бак  
Б2 Бак накопительный  
БЗ Бак чернильный  
Н1,Н2,НЗ Насос циркуляционный центробежный СР 25  
ЕМ1,ЕМ2 Мерная емкость  
Т1,Т2 Простой трубопровод  
ТЗ,Т4 Сложные трубопроводы  
КР1...КР13 Кран шаровый  
31...37 Задвижка клиновая  
Д1 Мерная диафрагма  
ТР1,ТР2 Тройник  
О1 Отвод  

Стенд состоит из центробежных насосов, основного, накопительного и чернильного гидробаков, запорной арматуры, измерительных приборов и устройств, опытных трубопроводов и соединительных трубопроводов, размещенных на сварной раме и поддонах.

Стенд предназначен для исследования гидравлических сопротивлений в опытных трубопроводах Т1, Т2, ТЗ, ТР4 мерной диафрагме Д1, задвижке 33, а также для опытного получения рабочих характеристик одного центробежного насоса или двух последовательно и параллельно соединенных насосов. При подаче струйки чернил в поток через трубопровод Т1 производится демонстрация особенностей турбулентного и ламинарного режимов течения.

 

 

Блок пъезометров
Рис. 1. Схема учебного стенда «Механика жидкости» (ТМЖ-2В-09-12ЛР-01). L12=800 мм; L34=800 мм; L05=115 мм; L67=170 мм; LI=210 мм; LII=200 мм;

LIII=190 мм.

 

 

Рабочая жидкость (вода) центробежным насосом НЗ по соединительным трубопроводам из бака Б1 нагнетается в накопительный бак Б2, из которого под постоянным напором поступает к исследуемым элементам (трубопроводам Т1, Т2, ТЗ, Т4, диафрагме Д1, и к испытываемой задвижке 33).

Рис.2. Схематичный вид переключателя насоса WСР 25 Накопительный

Схематичный вид переключателя насоса А7УСР 25 представлен на рис. 2. Переключатель имеет три положения, соответствующие трем уровням подачи. Положение переключателя, отмеченное одной риской, (крайнее левое) соответствует минимальному уровню производительности насоса. Соответственно положение переключателя, отмеченное тремя рисками, (крайнее правое) соответствует максимальному уровню производительности.

Накопительный бак представляет собой емкость из оргстекла с вертикальной перегородкой, которая разделяет бак на две секции. Высота перегородки на 50 мм. меньше стенок корпуса. При работе стенда жидкость от насоса НЗ постоянно поступает в секцию бака, связанную с трубопроводами. Уровень жидкости в данной напорной секции определяется высотой перегородки. При уровне жидкости меньше высоты перегородки измерения статических напоров по показаниям пьезометров №1-17 на соответствующих лабораторных работах производить нельзя.

Излишек подаваемой насосом НЗ жидкости переливается во вторую секцию и сливается в бак Б1 через гибкий трубопровод. По окончании работы из напорной секции бака Б2 жидкость может быть слита в основной бак открытием крана КР5. При нормальной работе стенда данный кран должен быть закрыт.

Для того, чтобы избежать перемешивания основной воды с подкрашенной в ходе выполнения лабораторной работы по изучению режимов течения жидкостью, предусмотрена возможность подачи жидкости в бак Б2 из внешнего источника (водопровода). Для этого следует подключить трубопровод внешней подачи к крану КР8, закрыть кран КР7 и открыть кран КР8. Подкрашенная жидкость из мерной емкости ЕМ1 должна сливаться в канализацию через открытый кран КР12, кран КР11 в этом случае следует закрыть.

Всасывающими трубопроводами центробежные насосы Ш, НЗ ОМСР25), через шаровые краны КР1, КР6 соединены с баком Б1. Подача жидкости к насосу Н2 может производиться либо из накопительного бака Б2 через открытый кран КР4 (при исследовании параллельного соединения насосов Н1 и Н2), либо из бака Б1 насосом Н1 (при последовательном соединении). При работе стенда кран КР1 и КР6 всегда должны быть открыты.

Опытные трубопроводы выполнены из прозрачных гладких труб круглого сечения. Сужения и расширения между участками с разными условными проходами трубопровода ТЗ (уравнение Бернулли) выполнены в

виде конусов для обеспечения безотрывности течения и отсутствия вихрей. Переход между участками трубопровода Т4 выполнены в виде внезапного расширения и сужения.

Для регулировки величины подачи жидкости, и порядка включения трубопроводов служат регулируемые задвижки 31, 32, 34, 35, 36, 37. Подача через Т1 и Т2 регулируется задвижками 31 и 32. Для включения в схему и регулировки величины расхода через диафрагму Д1 служит клиновая задвижка 35, для этих же целей в трубопроводе подвода жидкости к внезапному расширению и исследуемой задвижке используется задвижка 34. Задвижкой 36 регулируется подача через сложный трубопровод ТЗ.

Переключением шаровых кранов КР2, КРЗ, КР4 достигается параллельная или последовательная работа насосов Н1 и Н2. Задвижка 37 предназначена для создания подпора в напорном трубопроводе, при снятии характеристик насосов. При параллельном соединении насосов Н1 и Н2 всасывание последнего происходит из накопительного бака через открытый кран КР4 при закрытом КР5.

Расходы жидкости через элементы стенда измеряются объемным способом, при помощи мерных емкостей ЕМ1 и ЕМ2, время наполнения которых может определяться при помощи электронного секундомера по показаниям поплавковых датчиков; также расход жидкости может быть определен при помощи визуального замера объема по шкале расположенной на мерной емкости и времени наполнения обычным, запускаемым вручную, секундомером.

В ручном режиме наиболее удобно осуществлять замеры следующим образом: закрывается кран, установленный на сливе емкости КР9 или КР10. После того, как набирается некоторое количество жидкости, включается секундомер. После набора дополнительного объема жидкости V секундомер останавливается. Для сброса текущего времени на шкале секундомера используется кнопка «СБРОС ПАРАМЕТРОВ».

Прибор «ОВЕН» запрограммирован для работы в режиме, соответствующем измерению времени (секундомер). Параметры, введенные при программировании прибора, выделены маркером в «Руководстве по эксплуатации счетчика импульсов СИ-8».

При переключении прибора в положение «ЕМ1» или «ЕМ2» осуществляется автоматический отсчет времени заполнения соответствующей емкости. Начало и конец отсчета определяются сигналами с поплавковых датчиков уровня, расположенных в мерных емкостях. При автоматическом замере времени контрольный объем жидкости составляет У=2,0 л. Слив жидкости из мерных емкостей осуществляется открытием шаровых кранов КР9 и КР10. Краны КР11 и КР12 предназначены для обеспечения двух возможных вариантов слива с ЕМ2. При закрытом КР12 и открытом КР11 слив производится в бак Б1, при закрытом КР11 и открытом КР12

 

При переключении СИ-8 в положение «Расход воды по счетчику» при нажатии кнопки » на табло отображается величина подачи насоса (показания расходомера РМ1 (включается в состав стенда по согласованию с заказчиком).

В качестве расходомера используется счетчик количества воды (СГВ-20) с цифровым выходом. Показания счетчика количества воды РМ1 (СГВ-20) используются для измерения расхода жидкости через сопло при исследовании силового воздействия струи жидкости с твердой преградой

Принцип работы и конструкция лопастного (пластинчатого) ротационного счетчика количества воды показана на рисунке 2.1. Измеряемая жидкость движется в пространстве, ограниченном цилиндрическими поверхностями корпуса 6 и ротора 8. Внутри ротора расположен неподвижный кулачок 7, на который опираются четыре ролика 9 с закрепленными на них лопатками 1, 2, 4 и 5.

Давление жидкости, поступающей через входной патрубок на лопасть 5,

 

приводит ротор во вращение, которое передается на счетный указатель. Ролики катятся по кулачку, лопасти при этом поочередно занимают место снаружи и внутри ротора. Таким образом, за полный оборот ротора через счетчик проходит количество жидкости, равное разности объемов цилиндра и ротора.

При изготовлении ротационных счетчиков особо внимание обращают на легкость хода роторов и уменьшение неучитываемых утечек через счетчик.

Рис. 2.1. Счетчик с пластинчатыми лопастями

Легкость хода (качественный показатель малого трения в механизме, а, следовательно, и малой потери давления на счетчике) обеспечивается

установкой валов ротора на подшипники качения. Уменьшение же утечек достигается тщательной обработкой и взаимной подгонкой сопрягаемых поверхностей.

Погрешность показаний ротационных счетчиков обычно не превышает -1% в пределах 10-100% номинального расхода. Показания счетчика регулируют сменой шестерен в редукторе счетного механизма.

На ротационный счетчик дополнительно установлена оптопара, позволяющая в сочетании со счетчиком импульсов СИВ подсчитывать количество оборотов счетчика в единицу времени. Дополнительные поправочные коэффициенты, задаваемые на приборе СИВ, позволяют перевести значение оборотов в значение расхода жидкости, проходящей через счетчик (данные коэффициенты уже установлены производителем стенда).

Для замера перепадов статических напоров на участках трубопроводов в состав стенда включены пьезометры, размещенные на передней панели. Соответствие пьезометра точке отбора можно видеть на схеме (см. рис. 1). На той же схеме обозначены дифференциальные пьезометры, которые используются для определения перепада статических напоров на элементах трубопровода (тройники, отвод).

Статическое давление на выходе насосов Н1 и Н2 измеряется датчиками давления ДД1 и ДД2, результаты замеров с которых отображаются на цифровом табло. Избыточное давление жидкости отображается в килопаскалях (КПа) на дисплеях измерителей-индикаторов.

Перед измерением давления (снятием показаний с измерителей-индикаторов) следует дождаться окончания переходных процессов, возникающих при изменении перекрытий управляющих задвижек. Таким образом, замеры давления следует делать по достижении его постоянного значения.


 

Лабораторная работа № 1

Измерение методов определения расхода воды объемным способом.

Цель работы:

Знакомство с объемным способом измерения расхода жидкости.

Задание:

Установить опытным путем количество жидкости прошедшее через участок трубопровода за определенный временный промежуток.

Теоретические основы метода:

Расходом воды называется объем ее, протекающий через поперечное сечение потока в единицу времени. Для крупных водотоков: рек, каналов, водосбросов гидротехнических сооружений и т. п.— расход выражается в кубических метрах в секунду (м3/с); расходы малых водотоков: родников, ручьев, лабораторных лотков и пр.— в литрах в секунду (л/с). Расход воды является одним из основных гидравлических элементов потока. Для рек расход воды - важнейшая характеристика, определяющая другие ее параметры, как, например, уровень воды, скорость течения, уклон водной поверхности и др. На основании систематических определений расходов воды вычисляют средние суточные расходы, максимальные и минимальные расходы, а также объемы стока реки за тот или иной интервал времени.

Существующие методы определения расхода воды можно разделить на две основные группы: непосредственное измерение и косвенное определение. К первой группе относится так называемый объемный метод, основанный на измерении расхода посредством мерных сосудов, подставляемых под струю воды. При этом измеряется время наполнения мерного сосуда. Расход определяется делением объема воды в сосуде на время наполнения. Этот метод применяется обычно на малых водотоках — ручьях, родниках, лабораторных лотках и т. п. Объемный метод отличается относительно большой точностью. Косвенное определение расхода воды может выполняться различными методами, общей характерной особенностью которых является то, что в них измеряется не сам расход (объем воды), а отдельные элементы потока, при этом расход получается путем вычислений. К таким методам относятся:

1. определение расхода по измеренным скоростям течения и площади поперечного сечения потока, сокращенно называемый методом «скорость—площадь»;

2. определение расхода с помощью мерных устройств: гидрометрических лотков, водосливов. В данном случае измеряемой величиной является напор на водосливе или во входной части лотка, при этом расход определяется по гидравлическим зависимостям;

3. определение расхода методом смешения; он имеет несколько разновидностей (электролитический, тепловой, колориметрический).\

В настоящее время применяется преимущественно электролитический метод, в котором расход воды определяется в зависимости от изменения электропроводности вводимого в поток раствора электролита при смешении его с водной средой. Метод «скорость - площадь» наиболее распространен в речной гидрометрии. Площадь поперечного сечения потока определяется по результатам измерений глубин, а скорости в отдельных точках живого сечения измеряются чаще всего гидрометрической вертушкой; реже для измерения скоростей применяют другие приборы или поплавки. К данному методу следует также отнести расчетный способ определения расхода по площади живого сечения и средней скорости потока, вычисленной по формуле Шези. В дальнейшем мы главное внимание обратим на способы определения расхода с применением гидрометрических вертушек, наиболее распространенные в настоящее время в речной гидрометрии. Метод определения расхода с помощью мерных устройств применяется чаще всего при измерении небольших расходов воды - на малых речках, ручьях, логах, оросительных каналах. Кроме того, этим методом пользуются для определения расходов воды через водопропускные отверстия гидротехнических сооружений с целью учета стока воды на гидроузлах. Метод смешения применяется главным образом на горных реках с большими скоростями течения, небольшими глубинами и сложным рельефом дна, где метод «скорость - площадь» не обеспечивает достаточную точность измерения скоростей течения и площади живого сечения. Необходимым условием успешного применения этого метода является хорошо выраженный турбулентный режим движения воды, при котором обеспечивается хорошее перемешивание вводимого в поток раствора с водной средой.

Проведение опыта:

1. Полностью закрыть задвижки З4, З5 и краны КРЗ, КР4. Задвижку З7 и краны КР1, КР2, КР9 полностью открыть.

2. Повернуть переключатель насоса H1 в крайнее правое положение и включить питание переключением соответствующего тумблера на блоке управления.

3. Поворачивая рукоятку задвижки З7 установить запорный элемент примерно в среднее положение.

4. Повернуть переключатель прибора для измерения времени в положение « ЕМ1».

5. Закрыть кран КР9. Измерить время ∆t заполнения объема V жидкости, поступающей в мерную емкость ЕМ1. В случае автоматического измерения контрольный объем фиксирован и составляет V=2,0 л. Записать значение времени в таблицу 2.1.1.

6. Открыть кран КР9 и слить жидкость из мерной емкости. Обнулить показания электронного секундомера.

7. Повернуть переключатель прибора для измерения времени в положение «секундомер». Измерить время ∆t заполнения объема V жидкости, поступающей в мерную емкость ЕМ1, используя прибор в качестве электронного секундомера, т.е. запуская и останавливая его вручную.

8. Выключить электропитание насоса.

 

Обработка результатов опыта:

Объем V, зная внутренний диаметр мерной емкостиD=114mm, можно определять по высоте контрольного отсека жидкости L (измеряется по боковым шкалам)

 

(1)

Результаты записать в таблицу 1.1.

 

Таблица 1.1.

Способ измерения V, л ∆t, сек Q, л/с
Автоматический режим 2,0    
Ручной режим      

 


 

Лабораторная работа № 2

 

ИЗУЧЕНИЕ РЕЖИМОВ ДВИЖЕНИЯ ЖИДКОСТИ ВИЗУАЛИЗАЦИЯ ЛАМИНАРНОГО И ТУРБУЛЕНТНОГО ТУЧЕНИЯ ЖИДКОСТИ

Цель работы:

Изучение особенностей ламинарного и турбулентного режимов течения. Исследование влияния критерия Рейнольдса на режим течения жидкости. Экспериментальное определение границ числа Рейнольдса, соответствующих ламинарному и турбулентному режимам.

 

Задание:

Установить опытным путем наличие двух режимов движения жидкости: ламинарного и турбулентного. Вычислить при обоих режимах числа Рейнольдса. Отметить переход от одного режима к другому и определить значение критического числа Рейнольдса. Выяснить из опытов характер зависимости потерь напора по длине трубы от режима движения.

 

Теоретические основы метода:

При движении вязкой жидкости различаются два режима - ламинарный и турбулентный.

Ламинарный поток имеет слоистую структуру - частицы жидкости дви­жутся с различными скоростями параллельно оси трубы без перемешива­ния и без пульсаций скорости и давления.

Турбулентный поток характеризуется неупорядоченным движением частиц жидкости. Наряду с основным поступательным перемещением частиц жидкости вдоль трубы наблюдаются хаотичные поперечные перемеще­ния и вращательные движения частиц, которые приводят к интенсивному перемешиванию жидкости. Кроме того, в каждой точке турбулентного потока наблюдаются пульсации скорости и давления.

Опытами установлено, что переход от ламинарного движения к тур­булентному происходит внезапно, скачкообразно, при определенном зна­чении безразмерного параметра. Данный безразмерный параметр получил название числа Рейнольдса:

 

(1)

 

Здесь u - средняя скорость потока, м/с;

d - диаметр трубы, м;

n - кинематическая вяз­кость жидкости, м2.

Для каждой конкретной установки существует некоторый диапазон значений числа Re, которые можно рассматривать как критические значения Reкр, при которых и происходит смена режимов движения. На значение критического числа Рейнольдса существенное влияние оказывают различные возмущения, возникающие в потоке вследствие особенностей структуры течения до входа в трубу и при входе (сужение потока и т.п.).

Необходимо иметь в вицу, что переход ламинарного движения к турбу­лентному удается задержать до достижения весьма больших значений Re, в то время как восстановление ламинарного движения при переходе к нему от турбулентного осуществляется при относительно малых значе­ниях Re. В практике гидравлических расчетов именно это малое зна­чение Re и принимают за Reкр.

При движении жидкости в круглых трубах принимают Reкр = 2320. Таким образом, при Re < Reкр в потоке сохраняется ламинарный ре­жим, а при Re > Reкр - турбулентный. Переход ламинарного режима в турбулентный происходит при увеличении скорости потока (расхода), а также при уменьшении вязкости жидкости и поперечных размеров потока (при постоянном расходе).

Если в начале и конце трубы установить пьезометры, то разность пьезометрических напоров h1 в начале и h2 в конце трубы покажет величину потери напора на трение hl при движении на расстояние l между сечениями 1-1 и 2-2 (рис. 1).

 

       
   
 
 
Рис. 1. Схема измерения потери напора на трение по длине трубы.  

 


Зависимость гидравлических потерь на трение от скорости потока имеет вид:

 

(2)

 

где a - коэффициент пропорциональности;

n - показатель степени.

При ламинарном режиме потери на трение пропорциональны средней скорости потока (n=1). При турбулентном режиме с увеличением числа Рейнольдса показатель степени в формуле (2) возрастает от n=1,75 до n=2. Нижний предел этого интервала соответствует области сопротивления гидравлически гладких труб, верхний предел - квадратичному закону сопротивления (гидравлически шероховатым трубам). Промежуточные значения характеризуют переходную область сопротивления.

 

Для исследования и визуализации режимов течения на вход прямого трубопровода Т1 подается тонкая струйка подкрашенной чернилами жидкости, которая поступает из специальной емкости (бака) Б3. Данная лабораторная работа выполняется только при условии подключения к крану КР8 автономного источника чистой воды (например, водопровода), а также обеспечении слива с выхода крана КР12 в канализацию. Кран КР8 перед работой должен быть закрыт.

Проведение опыта:

1. Полностью закрыть задвижки З1, З2, З4, З5, З6, З7, З8 и краны КР4, КР5, КР7, КР11. Краны КР10, КР12, КР14 полностью открыть.

2. Открыть кран КР8 и дождаться наполнения напорной секции накопительного бака Н2 вплоть до возникновения перелива.

3. Открыть З1 на один оборот до возникновения минимального течения через трубопровод Т1.

4. Частично закрывая кран КР14 добиться минимальной величины перелива из рабочей полости бака, для минимизации начальных возмущений.

5. Частично открыть задвижку З8 вплоть до начала истечения красящей жидкости.

6. При необходимости уменьшать расход через трубопровод, прикрывая задвижку З1, вплоть до возникновения прямой струйки окрашенной жидкости. Отрегулировать подачу красящей жидкости (З8) и минимальный перелив (КР14).

7. Закрыть кран КР10. Измерить время ∆t заполнения объема V жидкости, поступающей в мерную емкость ЕМ2. Записать значения в таблицу 2.10.1. Открыть кран КР10.

8. Зарисовать вид подкрашенной струйки в потоке в соответствующую графу таблицы 2.2.1.

9. Приоткрыть задвижку З1 и повторить действия, описанные в пунктах 6, 7 и 8. Результаты занести в табл. 2.2.1.

10. Повторять действия по пунктам 6, 7, 8 и 9 вплоть до полного открытия З1.

11. Закрыть задвижку З8.

12. Закрыть задвижку З1.

13. Выключить питание насоса Н3.

Примечание. При проведении опытов следует избегать возмущений, вызванных внешними воздействиями на установку (сот­рясением и т.п.), т.е. не прикасаться к установке без необходимости, и все регулировки производить плавно.

 

Обработка результатов опыта:

1. Вычислить кинематическую вязкость воды по эмпирической формуле Пуазейля:

 

ν = 0,179 · 10-2/ (1000 + 34Т +0,22Т2) (3)

 

где ν - кинематический коэффициент вязкости, м2/с;

Т - температура, °С.

 

2. Определить расход воды:

 

(4)

 

и записать данные в таблицу 2.1

 

3. Рассчитать среднюю скорость жидкости

4. Рассчитать число Рейнольдса по формуле (1)

5. Определить режимы течения жидкости в трубопроводе для всех случаев.

6. Сделать выводы.

Таблица 2.1

V, л ∆t, сек Q, л/с ϑ, мм/с Re, мм Внешний вид струйки жидкости
             
             
             
             
             
             
             

 

Лабораторная работа № 3

Исследование характеристик трубопроводов при различных режимах течения

 

Цель работы:

Закрепление знаний по разделам "Ламинарное и турбулентное течение в круглых трубах", получение навыков экспериментального определения характеристик трубопровода.

 

Задание:

Определить из опыта коэффициент трения λ при заданном расходе в имеющемся трубопроводе. Сравнить полученную величину λ с вели­чиной, определенной по справочным данным.

 

Теоретические основы метода:

Потери напора h на участке трубопровода в общем случае определяются из уравнения Бернулли:

 

(11)

 

где Z1 геометрическая высота сечения 1-1;

Z 2 геометрическая высота сечения 2-2;

- пьезометрический напор в сечении 1-1;

- пьезометрический напор в сечении 2-2;

υ1 - средняя скорость потока в сечении 1-1;

υ 2 - средняя скорость потока в сечении 2-2;

α1 - коэффициент Кориолиса в сечение 1-1;

α2 - коэффициент Кориолиса в сечение 2-2;

 

Исследуемый участок трубопровода представляет собой отрезок прямой горизонтальной трубы постоянного диаметра, поэтому потери на трение является единственным видом потерь напора на этом участке. Кроме того, и υ1 = υ2, а значит и α1 = α2, поэтому из уравнения (11) следует, что потери на трение на исследуемом участке:

 

(12)

 

Потери напора на трение определяются по формуле Дарси:

 

(13)

 

Коэффициент λ называют коэффициентом гидравлического трения. Исследования показали, что для ламинарных потоков в трубах:

 

(14)

 

где А - константа, зависящая от формы сечения трубопровода. Для круглой трубы А =64, а число Рейнольдса определяется по формуле:

 

(15)

 

При турбулентных режимах λ зависит от конфигурации потока или, как говорят, от пограничной геометрии, а также от числа Рейнольдса:

 

(16)

 

По результатам экспериментов коэффициент λ можно определить с помощью формулы (13), если измерить среднюю скорость υ и потери напора hтр.

Теоретические исследования показали, что согласно (16) следует искать эмпирическую зависимость λ от числа Re икакого-либо безразмерного параметра, определяющего геометрическое подобия потоков. Для гладких круглых труб такого параметра не требуется, поскольку все круглые трубы геометрически подобны и для них экспериментальные точки на графике λ=λ(Re) должны образовать единую кривую. Однако шероховатые трубы не являются геометрически подобными, поскольку требование геометрического подобия должно распространяться не только на форму поперечного сечения, но и, на форму выступов неровностей стенок. Но тогда при строгом подходе практически невозможно найти две геометрически подобные трубы с естественной шероховатостью. В связи с этим в качестве приближенного допущения принимают, что шероховатые трубы будут геометрически подобными, если отношение средней высоты, выступов шероховатости Δ к радиусу ro или диаметру d будет одинаковым. Тогда опытные данные следует обрабатывать в виде кривых:

 

(17)

 

Отношение Δ/d (или Δ/r0) называют относительной шероховатостью, а обратную величину d/Δ – относительно гладкостью.

Н. Никурадзе (1933 г.) впервые обработал свои многочисленные опытные результаты указанным способом и построил универсальный график зависимости (17) приведенный на рисунке 6. Шероховатость в опытах Никурадзе создавалась искусственно путем наклеивания калиброванных песчинок на внутреннюю поверхность трубы. Такая шероховатость получалась равнозернистой, чем существенно отличалась от естественной шероховатости труб, образующейся в результате коррозии, отложений и т.п.

Рассмотрим подробно график Никурадзе:

1 - зона ламинарного режима, изображенная прямой. Здесь точки, относящиеся к опытам с разной шероховатостью, ложатся на одну прямую, уравнением которой является зависимость:

 

(18)

 

 
 
Рис. 6. Зависимость lg(1000 ) от Re для труб с искусственной шерховатостью, построенная Н. Никурадзе.    

 

 


Границей служит значение абсциссы lg(2300)=lg(Reкр).

Таким образом, данная закономерность имеет место при Re ≤ Reкр, т.е. при ламинарном режиме движения.

В диапазоне чисел Re=2300¸4000 осуществляется переход от ламинарного течения к турбулентному. В потоке наблюдается неустойчивость, порождаемая периодическим возникновением очагов турбулентности и их исчезновением.

2 - зоне гладкостенного течения, образуемая опытными точками, расположенными вдоль другой прямой. Здесь λ также не зависит от шероховатости:

 

(18)

Границей зоны ориентировочно могут служить значения:

 

(19)

 

Строение потока в пределах гладкостенной зоны можно представить в виде: турбулентного ядра потока и вязкого подслоя в близи стенки, движения в котором преимущественно ламинарное. Толщина подслоя δл достаточна, чтобы покрыть все неровности стенки, благодаря чему движение турбулентного ядра потока происходит как бы в гладкой трубе. Трубы, работающие в таком режиме, называют гидравлически гладкими.

3 - доквадратичная зона сопротивления, которая ограничивается линией гладкостённого режима и штриховой линией К-К, образованной точками, отделяющими горизонтальные участки кривых. В зоне 3 каждая кривая отвечает определенному значению относительной гладкости. Здесь λ зависит от числа и относительной гладкости трубы d/Δ:

 

(20)

 

Границами зоны приближенно служат значения:

 

<Re . (21)

 

4 - зона квадратичного сопротивления, образуемая горизонтальными участками кривых. В этой зоне коэффициент λ не зависит от ,т.е.:

 

(22)

 

Эта зона имеет место при:

 

Re> (23)

 

Толщина вязкого подслоя здесь весьма мала, и выступы шероховатости полностью взаимодействуют с турбулентным ядром потока.

График Никурадзе дает общее представление о характере зависимости



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-15 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: