Объясните разницу между отслеживанием позиции и глобальной локализацией. Приведите примеры использования позиции и глобальной локализации.




В чем заключается главная трудность, связанная с использованием акселерометра для оценки относительного положения? Что является причиной и следствием этой проблемы?

Используемые в авиации инерциальные системы навигации [6] позволяют рассчитывать оценку локации объекта (в том числе и высоту полета), отклонение которой от истинного положения без корректировки увеличивается с течением времени. Применение атмосферных датчиков давления позволяет значительно повысить точность определения высоты полета [7], хотя в силу изменчивости атмосферного давления в долгосрочном периоде абсолютную высоту можно измерять, только используя дополнительные данные, например от GPS-модулей.

Для ряда приложений точного определения абсолютной высоты не требуется. В таких случаях достаточно зафиксировать лишь изменение положения объекта по высоте. В [11] авторы оценивают точность определения фактов падения людей при ходьбе на основе резких отклонений в показаниях датчиков давления. Такие системы позволяют медицинскому персоналу быстрее оказывать помощь людям в специальных учреждениях. Подобные системы относятся к классу приложений, использующих шаблоны поведения человека при ходьбе [10]. Датчики давления, закрепленные на теле человека и используемые совместно с датчиками ускорения, значительно повышают точность определения высоты положения человека при ходьбе, а также при перемещениях между этажами по сравнению с использованием только датчиков ускорения [5]. В [5; 8] авторы анализируют точность определения относительной высоты, используя датчик с заранее известной высотой (опорный датчик). Высота рассчитывается по разнице между показаниями давления опорного датчика и датчика, закрепленного на объекте (мобильный датчик).

Поскольку датчики измеряют давление с некоторой погрешностью, а атмосферное давление с течением времени меняется, то вычисление абсолютной высоты всегда сопряжено с ошибками.

Использование показаний от одного опорного и одного мобильного датчиков с целью определения относительной высоты положения последнего возможно только при соответствующем усреднении показаний. Однако при усреднении за большой период времени точность определения высоты может ухудшиться: сглаживание показаний может нивелировать резкие изменения положения датчика по высоте. Дополнительным ограничением при использовании усредненных показаний является энергопотребление. Чем больше данных используется для усреднения за один и тот же период времени, тем больше энергозатрат требуется на получение соответствующих показаний. Это особенно критично при использовании мобильных датчиков с автономным питанием.

Использование данных от акселерометра, гироскопа и/или магнетометра незначительно улучшает точность определения высоты, поскольку точность у датчиков давления выше, чем у остальных [8]. Предложенный в работе способ расчета оценки высоты датчика основан на усреднении данных от нескольких опорных датчиков давления. В работе приводятся результаты расчета высоты положения датчика при различном количестве данных и различном количестве датчиков. Выполнен анализ причин отклонения скорости уменьшения эмпирической дисперсии оценки высоты при увеличении количества данных по сравнению с теоретической дисперсией; построена соответствующая модель. В заключение приводятся: способ расчета доверительного интервала оценки используемой для расчета высоты положения датчика, результаты расчетов дисперсии при различном количестве показаний датчиков и способ выбора оптимального набора датчиков для расчета наилучшей в определенном смысле оценки неизвестной высоты

 

Объясните разницу между отслеживанием позиции и глобальной локализацией. Приведите примеры использования позиции и глобальной локализации.

Локализация— это универсальный пример робототехнического восприятия. Она представляет собой задачу определения того, где что находится. Локализация — одна из наиболее распространенных задач восприятия в робототехнике, поскольку знания о местонахождении объектов и самого действующего субъекта являются основой любого успешного физического взаимодействия. Например, роботы, относящиеся к типу манипуляторов, должны иметь информацию о местонахождении объектов, которыми они манипулируют. А роботы, передвигающиеся в пространстве, должны определять, где находятся они сами, чтобы прокладывать путь к целевым местонахождениям.

Существуют три разновидности задачи локализации с возрастающей сложностью. Если первоначальная поза локализуемого объекта известна, то локализация сводится к задаче отслеживания траектории. Задачи отслеживания траектории характеризуются ограниченной неопределенностью. Более сложной является задача глобальной локализации, в которой первоначальное местонахождение объекта полностью неизвестно. Задачи глобальной локализации преобразуются в задачи отслеживания траектории сразу после локализации искомого объекта, но в процессе их решения возникают также такие этапы, когда роботу приходится учитывать очень широкий перечень неопределенных состояний. Наконец, обстоятельства могут сыграть с роботом злую шутку и произойдет "похищение" (т.е. внезапное исчезновение) объекта, который он пытался локализовать. Задача локализации в таких неопределенных обстоятельствах называется задачей похищения. Ситуация похищения часто используется для проверки надежности метода локализации в крайне неблагоприятных условиях.

В целях упрощения предположим, что робот медленно движется на плоскости и что ему дана точная карта среды (пример подобной карты показан на рис. 25.7). Поза такого мобильного робота определяется двумя декартовыми координатами со значениями χ и у, а также его угловым направлением со значением Θ, как показано на рис. 25.6, а. (Обратите внимание на то, что исключены соответствующие скорости, поэтому рассматриваемая модель скорее является кинематической, а не динамической.) Если эти три значения будут упорядочены в виде вектора, то любое конкретное состояние определится с помощью соотношения

Рис. 25.6. Пример применения карты среды: упрощенная кинематическая модель мобильного робота. Робот показан в виде кружка с отметкой, обозначающей переднее направление. Показаны значения позиции и ориентации в моменты времени t и t+1, а обновления обозначены соответственно термами. Кроме того, приведена отметка с координатой, наблюдаемая во время t (а); модель датчика расстояния. Показаны две позы робота, соответствующие заданным результатам измерения расстояний. Гораздо более вероятным является предположение, что эти результаты измерения расстояний получены в позе, показанной слева, а не справа (б)

 
 

3/17/26. Можно ли использовать глобальные методы планирования с датчиком обратной связи. Если да, то как? Приведите примеры использования глобальных методов планирования с датчиком обратной связи.

Традиционно, задачи навигации включают в себя две подзадачи, которые можно разделить во времени: локализация в пространстве и планирование пути. Локализация заключается в оценке текущего положения робота относительно определенных известных опорных пунктов окружающей среды, заданные в абсолютных координатах. Планирование заключается в поиске, по возможности, кратчайшего маршрута и продвижении в пункт назначения.

В целенаправленной навигации принято выделять минимум три иерархических уровня представления проблемы:

  • проход препятствий
  • локальную навигацию
  • глобальное планирование маршрута.

Алгоритмы глобального планирования используют информацию о всем пространстве, чтобы определить участки, по которым возможно движение, и затем выбрать оптимальный путь. Для задачи планирования найдены точные алгоритмические решения. Однако точные алгоритмы имеют большую вычислительную сложность и, кроме того, требуют точных алгебраических моделей помех. Эвристические методы не гарантируют полноты поиска и оптимальности даже при глобальном планировании, когда доступна вся информация об окружающей среде. Однако эвристические глобальные методы планирования уменьшают сложность задачи и чувствительность к ошибкам в данных различными способами. Используя генетические алгоритмы можно найти оптимальный маршрут с учетом минимального времени движения с различными сценариями реальных условиях дорожного движения и разной скоростью движения транспортного средства.

Неотъемлемой частью любой системы навигации является желание достичь пункта назначения и при этом не заблудиться, не врезаться в какой-нибудь из объектов[10]. Также могут быть и другие ограничения на тот или иной маршрут, например: ограничение скорости, или зоны неопределенности, где теоретически, конечно, можно проложить маршрут, но не желательно. Часто маршрут для робота планируется автономно, что может привести робота в пункт назначения при условии, что окружающая среда прекрасно известна и стационарна, поэтому робот может отлично отслеживать окружающую среду. Но при решении навигационных задач в реальной среде соблюдение всех этих условий практически невозможно[11]. Таким образом, ограниченность методов планирования автономного движения привело исследователей к изучению онлайн-планирования — это планирование опирается на знания, полученные от зондирования местной окружающей среды для обработки неизвестных препятствий по мере того, как робот будет проходит путь в пространстве.

Общая постановка задачи планирования пути мобильного робота:

1. Применение эволюционных алгоритмов в задачах навигации

2. Выбор генетического алгоритма для реализации эволюционного навигатора (ЭН)

3. Описание алгоритма эволюционного навигатора и пополнение базы данных алгоритмов новосозданным алгоритмом.

Эволюционный алгоритм, описанный здесь, является эволюционным навигатором, что сочетает в себе автономный режим и режим онлайн планирования с применением простой карты высокой точности и эффективного алгоритма планирования[12]. В первой части алгоритма автономный планировщик глобально ищет оптимальные пути от самого начала и до места назначения, а вторая часть онлайн планировщика отвечает за обработку возможных столкновений или ранее неизвестных объектов, заменив часть первоначального глобального пути на оптимальный подпуть. Важно отметить, что обе части ЭН используют один и тот же эволюционный алгоритм, но с разными значениями различных параметров. ЭН сначала считывает карту и получает исходное и целевое места нахождения. Затем автономный эволюционный алгоритм (АЭА) генерирует близкий к оптимальному глобальный путь: это частично-прямолинейный путь, состоящий из допустимых узловых точек или узлов.

Другие проблемы развития автономных роботов[править | править вики-текст]

Проблемы прямой опасности людям от машин[править | править вики-текст]

С неустанным развитием робототехники, роботы и другие автоматизированные системы становятся все более умными и все более развитыми. В то же время на них перекладывают все больше обязанностей: вождение машины, помощь инвалидам и престарелым людям, охрана дома и, вероятно, даже участие в военных операциях. Возникает проблема полного доверия роботам: нет уверенности, что роботы никогда не примут такого решения, что нанесет человеку вред.[13]

В первую очередь проблема касается боевых роботов. В современных армиях роботы применяют, в основном, для обезвреживания мин и бомб, а также для ведения разведки, однако, все чаще их используют как полноценные боевые машины, оснащенные современным вооружением. В это время, как правило, боевым роботом управляет живой оператор, который несет ответственность за все действия вверенного ему устройства. Однако, если предоставить возможность машине самостоятельно принимать решение о выборе цели, ситуация полностью меняется. Современная война должна проходить таким образом, чтобы впоследствии можно было выявить ответственных за смерть мирных людей, погибших в ходе конфликта, и определить степень их вины. Поскольку убийства, совершенные автономными роботами, нельзя оценить с этой точки зрения — понятие «ответственность» к ним в принципе неприменимо. Поэтому разработка таких машин должна быть запрещена из этических соображений. Тем временем автономные машины, способные убивать, уже существуют. Как пример можно привести беспилотные самолеты-разведчики, оснащенные ракетным вооружением и запрограммированные на уничтожение целей, которые имеют набор определенных признаков. Такие аппараты широко использовали военные США в ходе конфликтов на Ближнем Востоке.[14]

Прямым следствием отсутствия человеческих черт является возможность использования роботов в операциях по подавлению народных волнений и угнетению прав человека. Если только появится такая возможность — непременно роботы будут использованы для незаконного захвата и удержания власти. Международное право не гарантирует защиты от агрессии со стороны людей без морали и наделенных властью. Правозащитники считают «бездушные машины» идеальным инструментом для подавления бунтов, репрессий и т. д., поскольку, в отличие от большинства людей, робот не станет обсуждать приказ и выполнит все, что ему укажут. Сам робот не является разумным существом, способным понять суть приказа и остановиться, а применение взысканий в отношении военных, которые послали его на задание — бессмысленно, так же, как и наказывать разработчиков аппаратной и программной части робота.[15]

Уэнделл Уолла, специалист по этике из Йельского университета, и историк и философ когнитивной науки Колин Аллен, который работает в Университете штата Индиана, говорят о неотвратимости всеобъемлющего внедрения автономных роботов в нашу жизнь. Как частичное решение проблемы опасности автономных роботизированных систем для человека, они предлагают новые законы робототехники, приняв которые мы могли бы уменьшить опасность от нашего высокотехнологичного творения:[16]

1. Расположение роботов в местах где изначально низок риск развития опасных ситуаций:

Прежде чем ставить роботам ту или иную задачу, необходимо убедиться, что всем компьютерам и роботам никогда не придется принимать решения, последствия которых не могут быть предусмотрены заранее. Место, где работают роботы, а также средства, которыми они работают — должны делать невозможным даже случайный вред постороннему человеку.

2. Не давать роботам оружие:

Хотя уже слишком поздно пытаться остановить строительство роботов как оружия, но еще не слишком поздно ограничить их применение только с определенным типом оружия — сети, дротики со снотворным и т. д., или ограничить ситуации, в которых оружие роботов допустимо применять.

3. Дать роботам законы робототехники как у Азимова:

Хотя правила Азимова плохо применимы из-за обилия сложности в определении морали: добра, зла, ценности, приоритетов и тому подобного — тем не менее, правила могут успешно ограничить поведение роботов, поставить их в очень ограниченные условия.

4. В законы робототехники должны быть заложены определенные принципы, а не простые инструкции:

Придать роботам мотивацию, например сделать приоритетом «наибольшее благо для наибольшего числа людей» — скорее всего, это будет безопаснее, чем закладывание упрощенных правил.

5. Обучение роботов, как детей вместо загрузки готового базового пакета алгоритмов:

У машин, которые учатся и постепенно, как бы, «взрослеют», можно развить понимание тех действий, которые люди считают правильными и неправильными. Программирование нейропроцесоров, перспективных баз для создания новейших автономных роботов, предусматривает только такой подход в противовес алгоритмизованному закладыванию наборов инструкций. Вероятность успеха этого положения достаточно перспективна, хотя эта стратегия требует нескольких технологических прорывов. В настоящее время инструментов, способных обучать роботов подобно людям, почти не существует.

6. Наделить машины эмоциями — искусственной психикой:

Человеческие способности, такие как эмпатия, эмоциональность и способность читать невербальные сигналы социального общения, должны дать роботам гораздо большие способности к взаимодействию с людьми. Работа в этом направлении уже началась, планируется, что домашние роботы в будущем будут обладать такими «эмоциональными» свойствами. Вероятность успеха этого подхода достаточно высока. Развитие эмоционально чувствительных роботов, безусловно, поможет реализации трех предыдущих законов робототехники. Большую часть информации мы используем, чтобы сделать выбор и сотрудничать с другими людьми. Выбор происходит из-за наших эмоций, а также, из-за нашей способности читать жесты и намерения, представлять события с точки зрения другого человека.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-04 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: