Фазовые переходы в твердом состоянии.




Что такое энергия Гиббса?

Самопроизвольность протекания процессов в системах открытого и закрытого типов описывается через специальный критерий, получивший название энергия Гиббса. Он является функцией состояния. Д.У. Гиббс, работая с термодинамическими системами, сумел вывести ее через энтропию и энтальпию. Энергия Гиббса, в частности, позволяет предсказывать направленность протекания самопроизвольных биологических процессов и оценивать их теоретически достижимый КПД.

Если применить выводы Гиббса ко второму термодинамическому закону, то формулировка будет следующей: при постоянных (const) давлении и температуре без внешнего воздействия система может поддерживать самопроизвольное протекание лишь таких процессов, следствием которых является уменьшение уровня энергии Гиббса до значения, которое наступает при достижении ею установившегося минимума. Равновесие любой термодинамической системы означает неизменность указанной энергии (минимум). Поэтому энергия Гиббса представляет собой потенциал (свободную энтальпию) в изобарно-изотермических системах. Поясним, почему указан именно минимум. Дело в том, что это одно из важнейших постулатов равновесия в термодинамике: данное состояние при неизменности температуры и давления означает, что для очередного изменения необходимо увеличить уровень энергии, а такое возможно лишь при смене каких-либо внешних факторов.

Буквенное обозначение – G. Численно равна разности между известной энтальпией и значением произведения температуры на энтропию. То есть энергия Гиббса может быть выражена через следующую формулу:

G = H – (S*t),

где S – энтропия системы; t – температура термодинамическая; H – энтальпия. Энтропия системы в данную формулу включена для того, чтобы учитывать тот факт, что высокая температура приводит к уменьшению упорядоченного состояния системы (беспорядок), а низкая же – наоборот.

Так как и Гиббсова энергия, и энтальпия – одни из функций системы в термодинамике, то посредством изменения G или H можно охарактеризовать протекающие химические превращения. Если приводится уравнение реакции и изменение энергии Гиббса, то его относят к классу термохимических.

Применительно к этой энергии может быть сформулировано Правило Гесса: если давление и температура неизменны, то создание новых веществ из первоначальных (базовых реагентов) приводит к тому, что энергия в системе изменяется, при этом вид происходящих реакций и их количество на результат никак не влияют.

Так как энергия, о которой говорится в статье, является изменчивой величиной, то для выполнения расчетов было введено понятие «стандартная энергия Гиббса». Эта величина присутствует в любом химическом справочнике, численно равна 298 кДж/моль (обратите внимание, что размерность точно такая же, как для любой другой молярной энергии). Это значение позволяет рассчитать изменение практически для любого химического процесса.

Если в процессе протекания химической реакции на систему оказывается внешнее воздействие (совершается работа), то значение энергии Гиббса увеличивается. Такие реакции относят к эндергоническим. Соответственно, если сама система совершает работу, затрачивая энергию, то речь идет о экзергонических проявлениях.

Понятие Гиббсовой энергии нашло широчайшее применение в современной химии. К примеру, синтез полимеров основан на реакциях присоединения. При их проведении несколько частиц объединяются в одну, при этом значение энтропии уменьшается. Основываясь на формуле Гиббса, можно утверждать, что внешнее воздействие (например, высокотемпературное) может обратить подобную экзотермическую реакцию присоединения, что и подтверждается на практике.

Фазовые переходы в твердом состоянии.

Фаза – это однородная часть системы, которая отделена от другой части системы (фазы) поверхностью раздела, при переходе через которую химический состав или структура изменяются скачком.

При кристаллизации чистого металла в системе имеются две фазы: жидкая (расплавленный металл) и твердая (зерна затвердевшего металла). В твердых сплавах фазами могут быть зерна чистого металла, зерна твердого раствора и зерна химического соединения. Многие металлы в жидком состоянии растворяются один в другом в любых соотношениях. В результате растворения образуется однородный жидкий раствор с равномерным распределением атомов одного металла среди атомов другого металла. Благодаря указанному взаимодействию на практике с целью равномерного распределения веществ в сплаве, прибегают к их расплавлению. Некоторые металлы, сильно различающиеся размерами атомов, не растворяются в жидком состоянии, а другие металлы растворяются в жидком состоянии ограниченно. При образовании сплавов в процессе их затвердевания возможно различное взаимодействие компонентов.

Если в процессе кристаллизации сила взаимодействия между однородными атомами больше силы взаимодействия между разнородными атомами, то после кристаллизации образуется механическая смесь, состоящая из зерен чистых металлов. В этом случае в твердом сплаве будут присутствовать зерна одного чистого металла и рядом с ними зерна другого чистого металла. Такая форма взаимодействия возникает при большом различии в свойствах входящих в сплав металлов.

Другой формой взаимодействия между веществами, входящими в состав сплава, является образование твердых растворов.

Твердые растворы – это твердые фазы, в которых соотношения между компонентами могут изменяться. В твердом растворе так же, как и в чистых металлах, атомы в пространстве расположены закономерно и образуют кристаллическую решетку. Этим они и отличаются от жидких растворов. В твердом растворе одно из входящих в состав сплава веществ сохраняет присущую ему кристаллическую решетку, а второе вещество, которое утратило свое кристаллическое строение, в виде отдельных атомов распределяется в кристаллической решетке первого. Первое вещество является растворителем, а второе – растворимым. В зависимости от характера распределения атомов растворимого элемента различают твердые растворы внедрения, замещения и вычитания; независимо от типа твердого раствора общим для них является то, что они однофазны и существуют в интервале концентраций. Для твердых растворов характерен металлический тип связи.

Наименьшие размеры атомов имеют некоторые металлоиды – водород, азот, углерод, бор, которые образуют с металлами твердые растворы внедрения. Но и у этих элементов размер атомов несколько превышает 12б размер межатомных промежутков в кристаллической решетке металлов, поэтому при образовании твердых растворов внедрения решетка искажается и в ней возникают напряжения. При этом концентрация твердого раствора внедрения не может быть высокой. Она редко превышает 1–2%. В твердых растворах замещения атомы растворимого элемента занимают места атомов основного металла. Посторонние атомы могут замещать атомы растворителя в любых местах, поэтому такие растворы называют неупорядоченными твердыми растворами. Размеры атомов растворимого элемента всегда отличаются от размеров атома растворителя (они больше или меньше), поэтому при образовании твердого раствора замещения кристаллическая решетка металлара-створителя искажается, не утрачивая при этом своего основного строения. Твердые растворы замещения могут быть ограниченными и неограниченными. Одно из условий неограниченной растворимости – размерный фактор. Чем больше различие в атомных радиусах, тем меньше растворимость.

С понижением температуры в твердых растворах замещения происходит процесс перераспределения атомов, в результате которого атомы растворенного элемента займут строго определенные места в решетке растворителя. Такие твердые растворы называют упорядоченными твердыми растворами, а их структуру – сверхструктурой.

Некоторые элементы видоизменяют свое кристаллическое строение в зависимости от изменения внешних условий – температуры и давления. В твердом состоянии литий, молибден имеют объемно-центрированную кубическую решетку; алюминий, серебро, золото, платина – гранецентрированную, а магний, цирконий – гексагональную. При изменении температуры может оказаться, что для того же металла более устойчивой будет другая решетка, чем та, которая была при другой температуре. Это явление носит название полиморфизма. Каждый вид решетки представляет аллотропическое видоизменение или модификацию. При полиморфных превращениях металлов основное значение имеет температура. Превращение одной аллотропической формы в другую происходит при постоянной температуре, называемой температурой полиморфного превращения и сопровождается тепловым эффектом, подобно явлениям плавление-затвердевание или испарение-конденсация. Это связано с необходимостью затраты определенной энергии на перестройку кристаллической решетки.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-11-19 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: