Переходные процессы в электроприводах с линейными механическими характеристиками без учета индуктивности.




Б И Л Е Т № 41

1. Переходные процессы в электроприводах с линейными механическими характеристиками без учета индуктивности.

2. Ограничение ускорения в системе подчиненного регулирования координат с ПИ-регулятором скорости, динамические характеристики.

3. Сравнительный анализ преобразователей частоты комплектных электроприводов.

 

Переходные процессы в электроприводах с линейными механическими характеристиками без учета индуктивности.

Переходный процесс электропривода с линейной механической характеристикой при одно и многоступенчатом пуске в случае Мс=const; w0=const

При одноступенчатом пуске переходный процесс описывается уравнениями

;

 

если увеличение скорости происходит не от w=0, а от какого-то начального установившегося

 
 

значения, как показано на графиках. Закон изменения ускорения


, где

Уменьшение e по мере увеличения скорости объясняется непрерывным уменьшением динамического момента Мдин. Если разгон идет из неподвижного состояния, т.е. когда wнач=0, то

Время разгона на любом участке процесса до какой либо промежуточной скорости wкон

Т.к. wкон=wc, то . Практически процесс считается закончившимся, когда разность между установившимся и текущим значением w снижается до 2%, т.е.

или

При wнач=0 wкон=0,98wс. поэтому

Обычно принимается t=(3-4)Tм

Величину Тм можно определить проведя касательную в любой точке кривой w(t) или М(t), например, в начале координат, как показано на графиках или используя следующие выражения

Для расчета переходного процесса при многоступенчатом пуске сначала строится пусковая диаграмма по ранее изложенным правилам задавшись пусковым и переключающим моментами. Для любой ступени разгона время, в течение которого момент изменяется от М1 до М2 может быть определено по формуле

Постоянная времени для любой ступени разгона

Законы изменения w и М при разгоне на любой ступени определяются согласно ранее приведенным выражениям.

Для примера рассчитаем переходный процесс на первой и второй ступенях. Сначала для первой ступени

1. 3.

2. 4.

Значения wн1 и wс1 находятся из графика, где изображена пусковая диаграмма при М=Мн и М=Мс . Задаваясь временем t от 0 до t1, рассчитываются законы изменения w и М на первой ступени и строятся кривые w=f(t) и M=f(t).

Далее делается расчет процесса на второй ступени

1. 3.

2. 4.

Значения wс2 и wк1 находятся из пусковой диаграммы. Задавясь временем t от 0 до t2, рассчитываются и строятся кривые w=f(t) и M=f(t) для второй ступени и т.д. Время разгона на естественной характеристике до w=wн=wс принимается равным tн=(3-4)Tм, где в Тм вместо wнх подставляется wн.

Переходные процессы электропривода с линейной механической характеристикой при Мс=const, w0=const в тормозных режимах

Рассмотрим сначала реверс, который заключается в торможении противовключением с дальнейшим изменением направления вращения и разгоне в противоположную сторону.

Если реверс осуществляется при активном моменте сопротивления Мс=const, переходный процесс описывается уравнениями, приведенными ранее для двигательного режима, с той разницей, что в выражениях для w и М нужно поставить знак минус перед wс и перед Мнач

На графике с механическими характеристиками показан переход из двигательного режима в режим противовключения и построены кривые переходного процесса. Двигатель при переводе его в режим противовключения тормозится по линии ВС. Затем, если его не отключить от сети, будет разгоняться в обратном направлении по линии CD, достигает скорости идеального холостого хода (-w0) и т.к. момент сопротивления активный, переходит в генераторный режим с отдачей энергии в сеть (линия DE). Равновесие наступит в т.Е, где М=Мс и скорость w=-wс.Такой процесс может быть, если в случае подъема тяжелого груза двигатель тормозится противовключением и при w=0 не отключается и не затормаживается механическими тормозами.

При реактивном моменте сопротивления процесс разбивается на два этапа. На первом этапе, являющемся тормозным, законы изменения w и М описываются теми же уравнениями что и при активном Мc. Время торможения до w=0 , где - wс- фиктивная скорость, к которой стремиться двигатель.

 
 

На втором этапе происходит разгон в противоположном направлении (после торможения противовключением и остановки). Знак Мс меняется на противоположный. Уравнения, описывающие переходный процесс будут иметь такой же вид, как для пуска двигателя, только wнач нужно принять равной 0, Мнач=-Мп и wс=-wс`,т.е.

;

Здесь Мп- пусковой момент.

Время реверса . При переходе скорости через 0 динамический момент Мдин скачком изменяется от значения Мдин=-(Мпс) до Мдин=-(Мпс), что вызывает соответствующее изменение ускорения и в кривых w=f(t) и M=f(t) появляется излом.

При динамическом торможении законы изменения w и М описываются теми же уравнениями, что и для реверса, т.е.

; , где wс- установившаяся

скорость, определяемая точкой пересечения механической характеристики динамического торможения и вертикали Мc =const.

В случае активного Мс точка “B”, соответствующая установившейся скорости wс2, относится к случаю, когда этот момент в начале процесса является тормозным, что имеет место, например, при подъеме груза, а т. “c” с установившейся скоростью wс1- к случаю, когда этот момент является движущим, например, при спуске груза (рис.а).

 
 

В случае торможения при подъеме груза под действием Мс и тормозного момента двигателя привод вначале будет тормозится и остановится, т.к. момент двигателя станет равным 0, но т.к. Мс является активным и будет продолжать действовать в том же направлении, под его действием система будет вращаться в обратную сторону. При этом Мс из момента сопротивления (тормозного) превратится в движущий, а тормозной момент двигателя изменит свой знак и будет продолжать действовать как тормозной. Установившаяся скорость наступит при равенстве момента двигателя и Мс т.е. в т. В. Кривые переходного процесса для этого случая изображены на рис. “б”. Время торможения до w=0, т.е. до остановки

Если активный момент сопротивления в начале торможения был движущим (торможение при спуске груза), то в начале торможения тормозной момент двигателя (отрезок ED на рис.”а”) больше движущего статического момента и имеет место замедление, сопровождающееся уменьшением тормозного момента двигателя. При скорости wс1 M=Mc, замедление прекращается и наступает установившийся режим тормозного спуска груза со скоростью wс1. В этом случае затормозить систему до остановки путем динамического торможения нельзя (рис.”в”).

При реактивном моменте сопротивления динамическое торможение происходит так же, как и при подъеме груза. Разница лишь в том, что при w=0 действие реактивного Мс прекратится, и т.к. момент двигателя тоже станет равным 0, система остановится. Соответствующие этому случаю механические характеристики и кривые w=f(t) и М=f(t) изображены на приведенных рис. Процесс будет протекать так, как если бы скорость w стремилась стать равной-wс , но прекратится при w=0. Поэтому соответствующие отрезки кривых на графике изображены пунктиром.

В заключение следует отметить, что процессы пуска и торможения в электроприводах, получающих питание от сети (w =const) отличаются от оптимальных.

Переходные процессы электропривода с линейной механической характеристикой при Мс=f(w)

В случае линейной М от w, т.е. при Мс=кw дифференциальное уравнение, определяющее переходный процесс, имеет вид

, где

wy- скорость установившегося режима при Мсy,

Dwy- падение скорости при установившемся режиме.

Учитывая, что wy+Dwy=w0 и умножая обе части уравнения на , получим

откуда ,где

Решение этого уравнения относительно w и М дает законы изменения w, М и I

;

Длительность переходного процесса

Т`м- это время, за которое электропривод разгонится из неподвижного состояния до wy при постоянном Мпуск.


При Мс01w (рис.”a”) и Мс01w (рис.”б”) переходный процесс описывается этими же уравнениями, что и при Мс=Кw, но в них

При вентиляторном моменте сопротивления дифференциальное уравнение, отражающее переходный процесс, имеет вид

Хотя это уравнение решить можно, однако конечные результаты мало пригодны для практического использования.Поэтому на практике чаще используются графические и графоаналитические методы. Естественно, что такие методы дают лишь приближенные результаты, однако, при тщательном выполнении их точность достаточна для решения практических задач. Правда, такие методы имеют и такой недостаток: они не дают возможности получить общие выводы. Решение может быть найдено лишь для отдельных частных случаев, когда значения всех параметров электропривода известны. Рассмотрим некоторые из них.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: