Основные электрические параметры, характеризующие стабилитрон




23. Туннельный диод – это полупроводниковый диод, в котором используется явление туннельного пробоя при включении в прямом направлении. Характерной особенностью туннельного диода является наличие на прямой ветви вольтамперной характеристики участка с отрицательным дифференциальным сопротивлением.

Для примера на рис. 1.12 показана прямая ветвь вольтамперной характеристики германиевого туннельного усилительного диода 1И104А (Iпр.макс = 1 мА – постоянный прямой ток, Uобр.макс = 20 мВ), предназначенного для усиления в диапазоне волн 2…10 см (это соответствует частоте более 1 ГГц).

Рис. 1.12 ВАХ туннельного диода

Общая емкость диода в точке минимума характеристики составляет 0,8…1,9 пФ. Туннельные диоды могут работать на очень высоких частотах более 1 ГГц. Наличие участка с отрицательным дифференциальным сопротивлением на вольтамперной характеристике обеспечивает возможность использования туннельных диодов в качестве усилительного элемента и в качестве основного элемента генераторов. В настоящее время туннельные диоды используются именно в этом качестве в области сверхвысоких частот.

Светодиоды (электролюминесцентные диоды) преобразуют энергию электрического поля в нетепловое оптическое излучение, называемое электролюминесценцией. Основой светодиода является р - n -переход, смещаемый внешним источником напряжения в проводящем направлении. При таком смещении электроны из n -области полупроводника инжектируют в р -область, где они являются неосновными носителями, а дырки во встречном направлении. В последующем происходит рекомбинация избыточных неосновных носителей с электрическими зарядами противоположного знака. Рекомбинация электрона и дырки соответствует переходу электрона из энергетического уровня Ее в энергетическое состояние уровня Еу с меньшим запасом энергии.

В германии и кремнии ширина запрещенной зоны сравнительно невелика и поэ-тому выделяемая при рекомбинации энергия передается в основном кристаллической решетке в виде тепла. Рекомбинационные процессы в арсениде галлия (GaAs), фосфиде галлия (GaP), карбиде кремния (SiC), имеющих большую ширину запрещенной зоны (например, для GaAs A? = 1,38 эВ), сопровождаются выделением энергии в виде квантов света, которые частично поглощаются объемом полупроводника, а частично излучаются в окружающее пространство. Поэтому внешний квантовый выход, фиксируемый зрительно, всегда меньше внутреннего.

Основными характеристиками светодиодов являются вольтамперная характеристика, а также зависимости мощности и яркости излучения от величины прямого тока. Мощность и яркость излучения во многом определяются конструкцией светодиода. Чем больший ток можно пропускать через диод при допустимом его нагреве, тем больше мощность и яркость излучения

К основным параметрам светодиода относятся мощность излучения Р, длина волны излучаемого света и КПД. Длина световой волны, определяющая цвет свечения, зависит от разности энергий, между которыми осуществляется переход электронов.

Светодиоды применяются для индикации и вывода информации в микроэлектронных устройствах. Управляемые светодиоды (с подвижной границей светящегося поля) используются для замены стрелочных приборов как аналоги оптических индикаторов настройки радиоаппаратуры. Светодиоды с несколькими светящимися полями позволяют воспроизводить цифры от 0 до 9. Кроме того, светодиоды применяются как источники излучения в оптронах – приборах бурно развивающейся оптоэлектроники.

Фотодиод полупроводниковый фотоэлектрический прибор с внутренним фото-эффектом, отображающим процесс преобразования световой энергии в электрическую. Внутренний фотоэффект заключается в том, что под действием энергии светового излучения в области p - n -перехода происходит ионизация атомов основного вещества и примеси, в результате чего генерируются пары носителей заряда электрон и дырка. Во внешней цепи, присоединенной к р - n -переходу, возникает ток, вызванный движением этих носителей (фототок).

Фотодиоды могут работать в двух режимах: вентильном (фотогенераторном) и фотодиодном (фотопреобразовательном). В отличие от вентильного, фотодиодный режим предполагает наличие внешнего источника питания (смещения).

При контакте двух полупроводников n - и р -типов на их общей границе создается контактная разность потенциалов. При отсутствии светового потока и нагрузки диффузионная составляющая тока р - n -перехода, уравновешивается дрейфовой составляющей тока, поэтому общий ток через переход равен нулю.

При освещении полупроводника в области р - n -перехода генерируются дополнительные пары носителей заряда. Поле объемного заряда р - n -перехода «разделяет» эти пары: дырки дрейфуют в р -область, а электроны – в n -область, т. е. происходит перемещение дополнительно возникших неосновных носителей. В результате плотности дрейфовых составляющих токов, определяемые равенствами (1.8), (1.9), возрастают, а следовательно, дрейфовый ток получает некоторое приращение, называемое фототоком Iф. При этом полный дрейфовый ток представляет собой, в соответствии с выражением (1.10), тепловой ток Io, обусловленный неосновными носителями при отсутствии освещения. Поскольку в области полупроводника p -типа накапливаются избыточные носители с положительным зарядом, а в области полупроводника n -типа – с отрицательным зарядом, то между внешними электродами появляется разность потенциалов представляющая собой фотоЭДС Еф. Эта ЭДС уменьшает высоту потенциального барьера, вызывая тем самым увеличение диффузионной составляющей тока. ФотоЭДС не превышает значения, численно равного ширине запрещенной зоны полупроводника. Такой режим используется, в частности, в солнечных батареях.

 

24. Транзистор, назначением которого является усиление мощности электрических сигналов, представляет собой полупроводниковый пробор с тремя чередующимися слоями полупроводника разного вида проводимости, на границе раздела которых образуется два р - n -перехода. Действие биполярного транзистора основано на использовании носителей заряда обоих знаков (дырок и электронов). Биполярный транзистор является наиболее распространенным активным полупроводниковым прибором.

Устройство транзистора. Биполярный транзистор в своей основе содержит три слоя полупроводника (р-n-р или n-р-n). Каждый слой полупроводника через невыпрямляющий контакт металл-полупроводник подсоединен к внешнему выводу. Средний слой и соответствующий вывод называют базой, один из крайних слоев и соответствующий вывод называют эмиттером, а другой крайний слой и соответствующий вывод-коллектором.

На рис. 1.13, а приведено схематическое изображение структуры транзистора типа n-р-n и два варианта условного графического обозначения (рис. 1.13, б). Транзистор типа р-n-р устроен аналогично, упрощенное изображение его структуры дано на рис. 1.14, а, вариант условного графического обозначения – на рис. 1.14, б. Транзистор называют биполярным, так как в процессе протекания электрического тока участвуют носители электричества двух знаков – электроны и дырки.

Рис. 1.13 Устройство (а) и обозначение транзистора типаn-р-n(б)

Но в различных типах транзисторов роль электронов и дырок различна.

Транзисторы типа n-р-n более распространены в сравнении с транзисторами типа р-n-р, так как обычно имеют лучшие параметры. Это объясняется следующим образом: основную роль в электрических процессах в транзисторах типа n-р-n играют электроны, а в транзисторах типа р-n-р – дырки. Электроны же обладают подвижностью в два-три раза большей, чем дырки и поэтому быстродействие транзисторов типа n-р-n выше.

Рис. 1.14 Устройство (а) и обозначение транзистора типа р-n-р (б)

 

25. Систему, совершающую колебания, называют осциллятором. То есть осцилляторы — это такие системы, в которых периодически повторяется какой-нибудь изменяющийся показатель или несколько показателей. Само же слово «осциллятор» происходит от латинского «oscillo» - качаюсь.

Осцилляторы играют важную роль в физике и технике, ведь практически любая линейная физическая система может быть описана как осциллятор. Примерами простейших осцилляторов могут служить колебательный контур и маятник. Электрические осцилляторы преобразуют постоянный ток в переменный, и создают колебания требуемой частоты с помощью схемы управления.

На примере колебательного контура, состоящего из катушки индуктивностью L и конденсатора емкостью C, можно описать базовый процесс функционирования электрического осциллятора. Заряженный конденсатор, сразу после соединения его выводов с катушкой, начинает разряжаться через нее, при этом энергия электрического поля конденсатора постепенно преобразуется в энергию электромагнитного поля катушки.

Когда конденсатор полностью разрядится, вся его энергия перейдет в энергию катушки, после чего заряд продолжить двигаться через катушку, и перезарядит конденсатор в противоположной полярности, чем была вначале.

Далее конденсатор начнет снова разряжаться через катушку, но в обратном направлении и т. д. - каждый период колебаний в контуре процесс будет повторяться, пока колебания не затухнут из-за рассеивания энергии на сопротивлении провода катушки и в диэлектрике конденсатора.

Так или иначе, колебательный контур в данном примере является простейшим осциллятором, так как в нем периодически изменяются следующие показатели: заряд в конденсаторе, разность потенциалов между обкладками конденсатора, напряженность электрического поля в диэлектрике конденсатора, ток через катушку, индукция магнитного поля катушки. При этом имеют место свободные затухающие колебания.

Чтобы колебания осциллятора стали незатухающими, необходимо восполнять рассеиваемую электроэнергию. При этом для поддержания постоянной амплитуды колебаний в контуре нужно контролировать поступающую электроэнергию, чтобы амплитуда не снижалась ниже и не росла выше заданной величины. Для достижения этой цели в схему вводят цепь обратной связи.

Таким образом, осциллятор превращается в схему усилителя с положительной обратной связью, где выходной сигнал частично подается на активный элемент схемы управления, в результате работы которой в контуре поддерживаются незатухающие синусоидальные колебания постоянной амплитуды и частоты. То есть синусоидальные осцилляторы работают за счет притока энергии от активных элементов к пассивным, с поддержанием процесса цепью обратной связи. Колебания имеют слабо изменяющуюся форму.

Осцилляторы бывают:

· с положительной или отрицательной обратной связью;

· с синусоидальной, треугольной, пилообразной, прямоугольной формой сигнала; низкой частоты, радиочастоты, высокой частоты и т. д.;

· RC, LC – осцилляторы, кристаллические осцилляторы (кварц);

· осцилляторы постоянной, переменной или перестраиваемой частоты.

 

26. Работа униполярных транзисторов основана на использовании носителей заряда одного знака: либо электронов, либо дырок. В биполярных транзисторах работают оба типа носителей заряда: инжекция носителей одного знака сопровождается компенсацией образующегося заряда носителями другого знака. Термин «полевые» характеризует механизм управления током – с помощью электрического поля (а не током базы как в биполярных транзисторах). В зарубежной литературе полевые транзисторы носят название FET (field effect transistors). Униполярные транзисторы имеют несколько разновидностей: Полевой транзистор Полевой транзистор МДП-транзистор с управляющим p-n переходом с индуцированным каналом со встроенным каналом Каждый из указанных видов полевых транзисторов может быть как n-, так и p- типа проводимости. Униполярные транзисторы с каналом p-типа принципиальных отличий от n- канальных не имеют, однако уступают полевым транзисторам n-типа по частотным свойствам, шумам и стабильности. На частотные свойства помимо паразитных емкостей влияет подвижность носителей заряда. Так для кремния (Si) подвижность электронов μn = 1400 см2 /В·с, а подвижность дырок μp = 500 см2 /В·с.

 

27. Полевой транзистор с изолированным затвором — это полевой транзистор, затвор которого электрически изолирован от канала слоем диэлектрика.

В кристалле полупроводника с относительно высоким удельным сопротивлением, который называют подложкой, созданы две сильно легированные области с противоположным относительно подложки типом проводимости. На эти области нанесены металлические электроды — исток и сток. Расстояние между сильно легированными областями истока и стока может быть меньше микрона. Поверхность кристалла полупроводника между истоком и стоком покрыта тонким слоем (порядка 0,1 мкм) диэлектрика. Так как исходным полупроводником для полевых транзисторов обычно является кремний, то в качестве диэлектрика используется слой диоксида кремния SiO2, выращенный на поверхности кристалла кремния путём высокотемпературного окисления. На слой диэлектрика нанесён металлический электрод — затвор. Получается структура, состоящая из металла, диэлектрика и полупроводника. Поэтому полевые транзисторы с изолированным затвором часто называют МДП-транзисторами.

Входное сопротивление МДП-транзисторов может достигать 1010…1014 Ом (у полевых транзисторов с управляющим p-n-переходом 107…109), что является преимуществом при построении высокоточных устройств.

Существуют две разновидности МДП-транзисторов: с индуцированным каналом и со встроенным каналом.

В МДП-транзисторах с индуцированным каналом (рис. 2, а) проводящий канал между сильнолегированными областями истока и стока отсутствует и, следовательно, заметный ток стока появляется только при определённой полярности и при определённом значении напряжения на затворе относительно истока, которое называют пороговым напряжением (UЗИпор).

В МДП-транзисторах со встроенным каналом (рис. 2, б) у поверхности полупроводника под затвором при нулевом напряжении на затворе относительно истока существует инверсный слой — канал, который соединяет исток со стоком.

Изображённые на рис. 2 структуры полевых транзисторов с изолированным затвором имеют подложку с электропроводностью n-типа. Поэтому сильнолегированные области под истоком и стоком, а также индуцированный и встроенный канал имеют электропроводность p-типа. Если же аналогичные транзисторы созданы на подложке с электропроводностью p-типа, то канал у них будет иметь электропроводность n-типа.

 

 

28. Биполярный транзистор с изолированным затвором (БТИЗ, англ. Insulated-gate bipolar transistor, IGBT) — трёхэлектродный силовой полупроводниковый прибор, сочетающий два транзистора в одной полупроводниковой структуре: биполярный (образующий силовой канал) и полевой (образующий канал управления)[1]. Используется, в основном, как мощный электронный ключ в импульсных источниках питания, инверторах, в системах управления электрическими приводами .

Каскадное включение транзисторов двух типов позволяет сочетать их достоинства в одном приборе: выходные характеристики биполярного (большое допустимое рабочее напряжение и сопротивление открытого канала пропорционально току, а не квадрату тока, как у полевых) и входные характеристики полевого (минимальные затраты на управление). Управляющий электрод называется затвором, как у полевого транзистора, два других электрода — эмиттером и коллектором, как у биполярного[2][3].

Выпускаются как отдельные БТИЗ, так и силовые сборки (модули) на их основе, например, для управления цепями трёхфазного тока.

 

29. Тири́стор — полупроводниковый прибор, выполненный на основе монокристалла полупроводника с тремя или более p-n-переходами и имеющий два устойчивых состояния:

· «закрытое» состояние — состояние низкой проводимости;

· «открытое» состояние — состояние высокой проводимости.

Тиристор можно рассматривать как электронный выключатель (ключ). Основное применение тиристоров (с тремя электрическими выводами — анодом, катодом и управляющим электродом) — управление мощной нагрузкой с помощью слабого сигнала, подаваемого на управляющий электрод.

В двухвыводных приборах, — динисторах переход прибора в проводящее состояние происходит, если напряжение между его анодом и катодом превысит напряжение открывания.

Также тиристоры применяются в ключевых устройствах, например, силового электропривода.

Существуют различные виды тиристоров, которые подразделяются, главным образом:

· по способу управления;

· по проводимости:

· тиристоры, проводящие ток в одном направлении (например, тринистор, изображённый на рисунке);

· тиристоры, проводящие ток в двух направлениях (например, симисторы, симметричные динисторы).

Вольт-амперная характеристика (ВАХ) тиристора нелинейна и показывает, что сопротивление тиристора отрицательное дифференциальное. По сравнению, например, с транзисторными ключами, управление тиристором имеет некоторые особенности. Переход тиристора из одного состояния в другое в электрической цепи происходит скачком (лавинообразно) и осуществляется внешним воздействием на прибор: либо напряжением (током), либо светом (для фототиристора). После перехода тиристора в открытое состояние он остаётся в этом состоянии даже после прекращения управляющего сигнала. Тиристор остаётся в открытом состоянии до тех пор, пока протекающий через него ток превышает некоторую величину, называемую током удержания.

 

 

30. Динистором, или, по-другому, диодным тиристором, называют переключательный компонент с двумя выводами, который переходит в открытое состояние при превышении определённого напряжения, которое прикладывают между его выводами. Динисторы содержат три электронно-дырочных перехода. Схематичное изображение структуры динистора дано на рис. 7.1.

 

Вывод от внешней зоны n2 называют катодом, а от зоны p1 – анодом. Зоны n1 и p2 носят название баз динистора. Переход между зонами p1, n1 и p2, n2 именуют эмиттерным, а между зонами n1 и p2 – коллекторным переходом.

Если от источника питания к аноду динистора приложим небольшое отрицательное напряжение, а к катоду положительное напряжение, то центральный коллекторный переход будет открыт, а крайние эмиттерные переходы станут закрыты. Зоны n1 и p2 не могут преодолеть, поступающие из анода и катода основные носители зарядов, а, следовательно, они не достигнут базы динистора. В результате через динистор течёт небольшой обратный ток, обусловленный неосновными носителями заряда, и динистор закрыт. Если к аноду динистора приложим очень большое отрицательное напряжение, а к катоду – высокое положительное напряжение, то произойдёт лавинный пробой, что видно на вольтамперной характеристике динистора, показанной на рис. 7.2.

 

 

I – участок открытого состояния динистора, на котором его проводимость высока;

II – участок отрицательного сопротивления;

III – участок пробоя коллекторного перехода;

IV – участок в прямом включении, на котором динистор заперт, и приложенное к его выводам напряжение меньше, чем необходимо для возникновения пробоя;

V – участок обратного включения динистора;

VI – участок лавинного пробоя.

Если от источника питания к аноду динистора приложим небольшое положительное напряжение, а к катоду незначительное отрицательное напряжение, то коллекторный переход будет закрыт, а эмиттерные переходы станут открыты. Носители зарядов поступают из области катода n2 в зону p2 (электроны), а из области анода p1 в зону n1 (дырки). В указанных зонах баз носители заряда уже станут неосновными, и в результате в этих зонах возникает рекомбинация носителей зарядов, и из-за неё концентрации свободных носителей зарядов станут меньше. Поле коллекторного перехода будет ускоряющим для ставших неосновными носителей заряда, которые ввиду инжекции его преодолевают и оказываются в зонах, где они вновь будут основными. В областях p1 и n2эти носители зарядов снова станут неосновными и вновь рекомбинируют. По причине рекомбинаций носителей зарядов проводимость динистора на участке IV мала и протекающий через него обратный ток также мал.

Если начать увеличивать постоянное напряжение, прикладываемое к динистору в прямом включении, то возрастает ширина коллекторного перехода и скорость носителей заряда, и становятся меньше интенсивности рекомбинаций, а прямой ток через динистор медленно возрастает. Чем больше будет прямое напряжение, тем интенсивнее станет ударная ионизация, порождающая новые носители заряда, что при определённом напряжении включения приведёт к лавинному пробою коллекторного перехода. Пробой сопровождает резкое увеличение проводимости динистора в прямом включении. Динистор открывается, и на нём будет падать небольшое остаточное напряжение.

Динисторы применяют в регуляторах и переключателях, чувствительных к изменениям напряжений. Симисторы, в отличие от обычных тиристоров, проводят ток анод-катод при протекании тока по управляющему электроду, как в прямом направлении, так и в обратном. В результате этого их вольтамперная характеристика симметрична, что отражено на рис. 7.4.

 

 

Таким образом, на вольтамперной характеристике каждого симистора присутствуют два участка отрицательного дифференциального сопротивления.

Структура симистора содержит пять слоёв, что отражено на рис. 7.5.

 

К управляющему электроду, который отведён от зоны n3, подсоединим вывод отрицательного напряжения, полученного от источника питания, относительно вывода от зон p2, n4, в результате чего электроны из зоны n3 инжектируют в зону p2. Кроме того, приложим напряжение от источника питания положительным полюсом к зонам p1, n1, а отрицательным полюсом к зонам p2, n4. Переходы П1 и П4 открыты, и играют роль эмиттерных переходов, а переход П2 закрыт и исполняет обязанности коллекторного перехода, и через симистор по выводам анод-катод протекает ток.

Теперь поменяем полярность и приложим напряжение отрицательным полюсом к зонам p1, n1, а положительным полюсом к зонам p2, n4. Переходы П1 и П4 закрыты, и переход П1 выполняет функции коллекторного перехода, а переход П2 открыт и служит коллекторным переходом, и через симистор и в этом случае по выводам анод-катод течёт ток.

Симисторы нашли широкое применение в устройствах регулирования скорости вращения электродвигателей, в системах освещения, в электронагревателях, в преобразовательных установках.

 

31.
У обычных тиристоров можно управлять моментом включения, но нельзя управлять моментом окончания токовой проводимости. В связи с этим использование тиристоров в цепях постоянного тока, а также в инверторах требует применения специальных средств (схемы индуктивно-емкостных контуров коммутации), гасящие ток.

В запираемых тиристорах положительным управляющим импульсом обеспечивается перевод тиристора в проводящее состояние, а отрицательным импульсом - выключение тиристора.

ВАХ запираемого тиристора аналогична ВАХ обычного тиристора, аналогичен и процесс включения.

Запираемый тиристор имеет такую же четырехслойную структуру, что и обычный тиристор. Поэтому к ним применим транзисторный аналог. При подаче отрицательного импульса тока управления в базовый слой структуры уменьшается заряд в обоих базах транзисторов, при этом снижении все составляющие тока тиристора, и он включается.

Переходный процесс выключения током в цепи управления происходит в три этапа:

1) при протекании тока IA=const подается ток в цепи управления. При этом Iк=(Iа-Iу). Чтобы первый этап перешел во второй необходимо определенное значение тока запирания намного большего значения тока включения (Iу закр>>Iу вкл). Значение тока запирания и тока анода связаны значением коэффициента усиления включения

Обычно G@3¸5;

 

Рис. 7.10. Переходные процессы при выключении запираемого тиристора

 

2) второй этап характеризуется резким снижением токов IА и IК. В течение этого этапа происходит дальнейшее снижение концентрации носителей в обеих базах структуры. Этап заканчивается тогда, когда эта концентрация становится равной нулю;

3) на третьем этапе происходит рассасывание не основных носителей и ток тиристора снижается до нуля.

Основное отличие запираемых тиристоров от обычных (не запираемых) заключается в ином расположении горизонтальных и вертикальных слоев с n- p-проводимостями.

Наибольшему изменению подверглось устройство катодного n-слоя, он разбит на несколько сотен элементарных ячеек равномерно распределенных по площади и соединенных параллельно. Такое исполнение вызвано стремлением обеспечить равномерное снижение по всей площади полупроводниковой структуры при включении прибора.

Базовый p-слой, не смотря на то, что выполнен как единое целое, имеет большое число контактов управляющего перехода, так же равномерно распределенных по площади и соединенных параллельно. Базовый n- слой выполнен аналогично, соответственно условиям обычного тиристора.

Анодный слой имеет шунты (зоны с n-типом проводимости), соединяющие n-базу с анодным контактом через небольшое распределение сопротивления. Анодные шунты предназначены для снижения времени включения прибора за счет улучшения условий извлечения зарядов из базовой n-области.

Запираемые тиристоры изготавливают в штыревых и таблеточных корпусах, устанавливаемых на типовых охладителях.

 

 

32. Фототиристор входит в число основных активных элементов полупроводниковых преобразователей электроэнергии. Их появление среди прочих устройств – результат развития и модернизации силовых полупроводниковых приборов. Применение фототиристоров в электротехнике и электроэнергетике позволяет при помощи простых и надёжных устройств решать стратегические проблемы. Наиболее эффективно фототиристоры используются в устройствах с последовательным соединением приборов и высоким уровнем электромагнитных помех.

Фототиристоры представляют собой оптоэлектронные полупроводниковые приборы, схожие по структуре с обычными тиристорами. Единственное отличие от последних заключается в том, что включаются они не электрическими импульсами, а падающим светом. Оптический вход фототиристора позволяет подключать оптоволоконный кабель любой длины.

Чаще всего фототиристоры изготавливают из кремния. Их спектральные характеристики схожи с другими кремниевыми фоточувствительными элементами. Скорость отклика на свет составляет менее 1 мкс. Кремниевый монокристалл располагается на медном основании. Приборы выпускаются как с открытым для освещения кристаллом, так и со встроенным в корпус светодиодом.

Фототиристор имеет более совершенную конструкцию, чем обычный тиристор, и обладает целым рядом преимуществ:

· прямое управление импульсами света;

· высокая устойчивость к помехам;

· простота обслуживания;

· надёжность и долговечность.

Современный фототиристор оснащён интегрированной самовосстанавливающейся защитой от перенапряжений. Защитная структура при работе в критическом режиме позволяет прервать неконтролируемые процессы. В этих целях в кристалле образована область с пониженным напряжением лавинного пробоя. Возникновение тока во внутренней структуре вызывает полное отпирание прибора. После окончания импульсного воздействия структура устройства восстанавливается. Благодаря такой защите тепловое разрушение многослойной структуры прибора исключено.

Фототиристоры имеют высокий уровень КПД, они устойчивы к многократным перегрузкам тока и напряжения. Работа фототиристора не изменяется под воздействием высоких электромагнитных помех и прочих внешних факторов.

Область применения тиристоров с оптическим управлением достаточно широка:

· высоковольтные преобразовательные устройства линий электропередач;

· компенсаторы реактивной мощности;

· импульсные генераторы;

· силовые установки с цепями постоянного и переменного тока.

Фототиристоры применяются для установки в самых различных источниках излучения (лампы накаливания, импульсные газоразрядные лампы, квантовые генераторы, светоизлучательные светодиоды). Необходимая для функционирования прибора величина светового потока определяется спектральным составом излучения, коэффициентом отражения и поглощения монокристалла, скоростью нарастания прямого напряжения.

Фототиристоры – это уникальное сочетание эксплуатационных характеристик: оптическое управление, интегрированные защитные функции, надёжность. Благодаря отменным параметрам оптический тиристор занимает ведущее место в перечне компонентов для электрооборудования.

Повышенная помехоустойчивость оптронных тиристоров относится к их потенциальным преимуществам. При использовании силовых оптотиристоров в регулируемых преобразователях электрической энергии не снижаются требования к качеству и надежности работы их систем импульсно-фазового управления (СИФУ). Недопустимы сбои в СИФУ и (или) подача сигналов управления при отрицательных напряжениях на вентилях. Выпрямители и регуляторы на оптронных тиристорах нельзя выполнять с системами управления и регулирования, осуществляющими непрерывную подачу управляющих сигналов одновременно на все или часть вентилей, например пакетную на повышенной частоте без обязательного контроля полярности напряжения на них.

 

33.

 

34. Тиристоры являются наиболее мощными электронными ключами, используемыми для коммутации высоковольтных и сильноточных (сильнотоковых) цепей. Однако они имеют существенный недостаток – неполную управляемость, которая проявляется в том, что для их выключения необходимо создать условия снижения прямого тока до нуля. Это во многих случаях ограничивает и усложняет использование тиристоров.

Для устранения этого недостатка разработаны тиристоры, запираемые сигналом по управляющему электроду G. Такие тиристоры называют запираемыми (GTO – Gate turn-off thyristor) или двухоперационными.

Запираемые тиристоры (ЗТ) имеют четырехслойную р-п-р-п структуру, но в то же время обладают рядом существенных конструктивных особенностей, придающих им принципиально отличное от традиционных тиристоров – свойство полной управляемости. Статическая ВАХ запираемых тиристоров в прямом направлении идентична ВАХ обычных тиристоров. Однако блокировать большие обратные напряжения запираемый тиристор обычно не способен и часто соединяется со встречно-параллельно включенным диодом. Кроме того, для запираемых тиристоров характерны значительные падения прямого напряжения. Для выключения запираемого тиристора необходимо подать в цепь управляющего электрода мощный импульс отрицательного тока (примерно 1:5 по отношению к значению прямого выключаемого тока), но короткой длительности (10-100 мкс).

Запираемые тиристоры также имеют более низкие значения предельных напряжений и токов (примерно на 20-30 %) по сравнению с обычными тиристорами.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-06-30 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: