Детектирование двоичных сигналов в гауссовом шуме




 

 

Критерий принятия решения, используемый в этапе 2 описывался форму­лой (7.7) следующим образом:

 

Популярный критерий выбора порога для принятия двоичного решения в выраже­нии (3.7) основан на минимизации вероятности ошибки. Вычисление этого минимального значения ошибки = начинается с записи связи отношения плотностей условных вероят­ностей и отношения априорных вероятностей появления сигнала. Поскольку плотность условной вероятности также называется функцией правдоподобия формулировка

 

 

(7.31)

 

 

есть критерием отношения функций правдоподобия (см. приложение Б). В этом неравен­стве и являются априорными вероятностями передачи сигналов и , a и — две возможные гипотезы. Правило минимизации вероятности ошибки (формула (3.31)) гласит, что если отношение функций правдоподобия больше отноше­ния априорных вероятностей, то следует выбирать гипотезу .

В разделе Б.3.1 показано, что при = и симметричных функциях правдо­подобия (i=l, 2) подстановка формул (3.5) и (3.6) в формулу (3.31) дает

 

(7.3)

 

где — сигнальный компонент при передаче , а — сигнальный компонент при передаче . Порог , представленный выражением , — это опти­мальный порог для минимизации вероятности принятия неверного решения в этом важном частном случае. Описанный подход называется критерием минимальной ошиб­ки.

Для равновероятных сигналов оптимальный порог , как показано на рис, 3.2, проходит через пересечение функций правдоподобия. В заключение отметим, что поскольку отношение является безразмерным, таким же является и отношение . Для проверки можно вычислить единицы измерения:

.

Лекция 8. Детектирование двоичных сигналов в гауссовом шуме

 

Согласованный фильтр

 

Согласованный фильтр (matched filter) — это линейное устройство, спроектированное, чтобы давать на выходе максимально возможное для данного передаваемого сигнала отношение сигнал/шум. Предположим, что на вход линейного, инвариантного во времени (принимающего) фильтра, за которым следует устройство дискретизации, подается известный сигнал s(t) плюс шум AWGN n(t). В момент времени t = Т сигнал на выходе устройства дискретизации z(T) состоит из компонента сигнала , и компонента шума . Дисперсия шума на выходе (средняя мощность шума) запи­сывается как . Отношение мгновенной мощности шума к средней мощности шума, (S/N)T, в момент t = Т вне устройства дискретизации на этапе 1 равно следующему:

 

(8.1)

Нам нужно найти передаточную функцию фильтра с максимальным отношением (SIN)T. Сигнал на выходе фильтра можно выразить через передаточную функцию фильтра H(f) (до оптимизации) и Фурье-образ сигнала на входе

(8.2)

где S(f) — Фурье-образ сигнала на входе, s(t). Еели двусторонняя спектральная плот­ность мощности шума на входе равна , то с помощью формул (1.19) и (1.53) мощность шума на выходе можно записать следующим образом:

 

(8.3)

Объединяя формулы (3.45) и (3.47), получаем выражение для (S/N) :

(8.4)

 

 

б)

Рис. 8.1. Межсимвольная интерференция в процессе детектирование:

а) типичная низкочас­тотная цифровая система; б) эквивалентная модель

Здесь характеризует передающий фильтр, — фильтрацию в канале, а — принимающий/выравнивающий фильтр. Таким образом, характеристика представляет передаточную функцию всей системы, отвечающую за все этапы фильтрации в различных местах цепочки передатчик-канал-приемник. В бинар­ной системе, использующей какую-нибудь распространенную кодировку РСМ, например NRZ-L, детектор принимает решение относительно значения символа путем сравнения выборки принятого импульса с порогом


 

Например, детектор, изображенный на рис. 3.15, решает, что была послана двоичная единица, если


принятый импульс положителен, или двоичный нуль — в противном случае. Вследствие системной фильтрации принятые импульсы могут перекрываться, как показано на рис. 3.15, б. Хвост импульса может "размываться" на соседний ин­тервал передачи символа, таким образом, мешая процессу детектирования и по­вышая вероятность появления ошибки; подобный процесс получил название межсимвольной интерференции (intersymbol interference — ISI). Даже при отсутст­вии шумов воздействие фильтрации и искажение, вызванное каналом, приводят к возникновению IS1. Иногда функция задается, и задача состоит в определении и , минимизирующих ISI на выходе .

 

Согласованные и обычные фильтры

Обычные фильтры отсекают нежелательные спектральные компоненты принятого сигнала при поддержании некоторой точности воспроизведения сигналов в выбран­ной области спектра, называемой полосой пропускания (pass-band). В общем случае эти фильтры разрабатываются для обеспечения приблизительно одинакового усиления, линейного увеличения фазы в зависимости от частоты в пределах полосы пропуска­ния и минимального поглощения в остальной части спектра, именуемой полосой за­граждения (stop-band). Согласованный фильтр имеет несколько иные "проектные приоритеты", направленные на максимизацию отношения сигнал/шум известного сигнала при шуме AWGN. В обычных фильтрах используются случайные сигналы, и результат фильтрации определяется только полосами сигналов, тогда как согласован­ные фильтры предназначены для известных сигналов, имеющими случайные парамет­ры (такие, как амплитуда и время). Согласованный фильтр можно рассматривать как шаблон, который согласовывает обрабатываемый сигнал с известной формой. Обыч­ный фильтр сохраняет временную или спектральную структуру сигнала. Согласован­ный фильтр, наоборот, в значительной степени модифицирует временного структуру путем сбора энергии сигнала, которая согласовывается с его шаблоном, и в заверше­ние каждого интервала передачи символа представляет результат фильтрации в виде значения максимальной амплитуды. Вообще, в цифровой связи приемник обрабаты­вает поступающие сигналы с помощью фильтров обоих типов. Задачей обычного фильтра является изоляция и извлечение высокоточной аппроксимации сигнала с по­следующей передачей результата согласованному фильтру. Согласованный фильтр на­капливает энергию принятого сигнала, и в момент взятия выборки (t = T) на выход фильтра подается напряжение, пропорциональное этой энергии, после чего следует детектирование и дальнейшая обработка сигнала.

 

Импульсы Найквиста

 

Рассмотрим последовательность информационных импульсов на входе передатчика и последовательность импульсов, получаемую на выходе согласованного фильтра с ха­рактеристикой типа приподнятого косинуса (перед дискретизацией). На рис. 3.21 пе­реданные данные представлены импульсными сигналами, которые появляются в мо- менты времени ,.... Фильтрование приводит к расширению входных сигналов, а следовательно, к запаздыванию их во времени. Время поступления импульсов обозна­чим t0,, t1.... Импульс, переданный в момент времени т0, поступает в приемник в мо­мент времени t0. Хвост, предшествующий основному лепестку демодулированного импульса, называется его предтечей (precursor). Для реальной системы с фиксирован­ным системным эталонным временем принцип причинности предписывает условие t0 , а разность времен 0 - t0 выражает задержку распространения в системе. В дан­ном примере интервал времени от начала предтечи демодулированного импульса и до появления его главного лепестка или максимальной амплитуды равен (утроенное время передачи импульса). Каждый выходящий импульс последовательности накла­дывается на другие импульсы; каждый импульс воздействует на основные лепестки трех предшествующих и трех последующих импульсов. В подобном случае, когда им­пульс фильтруется (формируется) так, что занимает более одного интервала передачи символа, определяется параметр, называемый временем поддержки (support time) им­пульса. Время поддержки — это количество интервалов передачи символа в течение длительности импульса. На рис. 3.21 время поддержки импульса равно 6 интервалам передачи символа (7 информационных точек с 6 интервалами между ними).

Время поддержки импульса Рис.8.2. Фильтрованная последовательность импульсов: выход и вход

 

На рис. 8.2, а показан импульсный отклик фильтра с характеристикой типа корня из приподнятого косинуса (максимальное значение нормированного фильтра равно единице, коэффициент сглаживания фильтра r = 0,5), а на рис. 3.22, б изображен им­пульсный отклик фильтра с характеристикой типа приподнятого косинуса, называе­мый импульсом Найквиста (нормирование и значение коэффициента сглаживания та­кие же, как и на рис. 3.22, а). Изучая эти два импульса, можно заметить, что они очень похожи. Однако первый имеет несколько более частые переходы, а значит, его спектр (корень квадратный из приподнятого косинуса) не так быстро затухает, как спектр (приподнятый косинус) импульса Найквиста. Еще одним малозаметным, но важным отличием является то, что импульс Найквиста с характеристикой типа корня из приподнятого косинуса не дает нулевой межсимвольной интерференции (можно проверить, что хвосты импульса на рис. 3.22, а не проходят через точку нулевой ам­плитуды в моменты взятия выборок). В то же время, если фильтр с характеристикой типа корня из приподнятого косинуса используется и в передатчике, и в приемнике, произведение передаточных функций двух фильтров дает характеристику типа припод­нятого косинуса, что означает нулевую межсимвольную интерференцию на выходе.

Было бы неплохо рассмотреть, как импульсы Найквиста с характеристикой типа корня из приподнятого косинуса выглядят на выходе передатчика и какую форму они имеют после демодуляциисфильтром,характеристика которого также представляет собой корень из приподнятого

косинуса.

-3 -2 -1 0. 1 2 3

Время

Рис.8.22,б. Импульс Найквиста с характери­стикой типа приподнятого косинуса

На рис. 8.23, а в качестве примера передачи приведена последовательность символов со­общения {+1 +1 -1 +3 +1 +3} из четверичного набора символов, где алфавит состоит из символов {±1, ±3}. Будем считать, что импульсы модулируются с помощью четверичной кодировки РАМ, а их форма определяется фильтром с характеристикой типа корня из приподнятого косинуса с коэффициентом сглаживания r = 0,5. Аналоговый сигнал на рис. 3.23, а описывает выход передатчика. Сигнал на выходе (последовательность им­пульсов Найквиста, форма которых получена с выхода фильтра с характеристикой типа корня из приподнятого косинуса) запаздывает относительно сигнала на входе (показанного в виде импульсов), но для удобства визуального представления, чтобы чи­татель мог сравнить выход фильтра с его входом, оба сигнала изображены как одновре­менные. В действительности передается (или модулируется) только аналоговый сигнал.

На рис. 8.23, б показаны те же задержанные символы сообщения, а также сигнал с выхода согласованного фильтра с характеристикой типа корня из приподнятого.

Исследованием проблемы задания формы принятого импульса с тем, чтобы пре­дотвратить появление ISI на детекторе, долгое время занимался Найквист [6]. Он по­казал, что минимальная теоретическая ширина полосы системы, требуемая для детек­тирования символов/секунду без ISI, равна Гц. Это возможно, если передаточ­ная функция системы имеет прямоугольную форму, как показано на рис. 8.16, а. Для низкочастотных систем с такой , что односторонняя ширина полосы фильтра равна (идеальный фильтр Найквиста), импульсная характеристика функции , вычисляемая с помощью обратного преобразования Фурье (см. табл. А.1), имеет вид ; она показана на рис. 3.16, б. Импульс, описываемый функцией , называется идеальным импульсом Найквиста; он имеет бесконечную длитель­ность и состоит из многочисленных лепестков: главного и боковых, именуемых хвостами.

Поскольку ограничение ширины полосы по Найквисту устанавливает теоретиче­ское максимальное уплотнение скорости передачи символов без межсимвольной интерференции, равное 2 символа/с/Гц, может возникнуть вопрос, можно ли что-то сказать об ограничении величин, измеряемых в бит/с/Гц. О последних ничего нель­зя сказать прямо; ограничение связано только с импульсами или символами и воз­можностью детектирования их амплитудных значений без искажения со стороны других импульсов. При нахождении длялюбой схемы передачи сигналов необ­ходимо знать, сколько битов представляет каждый символ, что само по себе являет­ся темой отдельного рассмотрения. Допустим, сигналы кодируются с использовани­ем М -уровневой кодировки РАМ. Каждый символ (включающий бит) представля­ется одной из М импульсных амплитуд. Для бит на символ размер набора символов составляет амплитуды. Таким образом, при 64-уровневой коди­ровке РАМ теоретическая максимальная эффективность использования полосы, не допускающая межсимвольной интерференции, равна 12 бит/с/Гц. (Подробнее об эф­фективности использования полосы в главе

Найквист установил, что если каждый импульс принятой последовательности имеет вид , импульсы могут детектироваться без межсимвольной интерферен­ции. На рис. 3.16, б показано, как удается обойти ISI. Итак, имеем два последова­тельных импульса, и . Несмотря на то что хвосты функции имеют бес­конечную длительность, из рисунка видно, что в момент взятия выборки функции хвост функции проходит через точку нулевой амплитуды, и подобным образом он будет иметь нулевую амплитуду в моменты взятия выборок всех остальных импульсов последовательности , . Следовательно, предполагая идеальную синхронизацию процесса взятия выборок, получаем, что межсимвольная интерференция не будет влиять на процесс детектирования. Чтобы низкочастотная система могла детектировать таких импульсов (символов) в секунду, ширина ее полосы должна быть равна ; другими словами, система с шириной полосы Гц может поддерживать максимальную скорость передачи символов/с (ограничение полосы по Найквисту) без ISI. Следовательно, при идеальной фильтрации Найквиста (и нулевой межсимвольной интерференции) максимальная возможная скорость передачи символов на герц полосы, называемая уплотнением ско­рости передачи символов (symbol-rate packing), равна

2 символа/с/Гц. Вследствие пря­моугольной формы передаточной функции идеального фильтра Найквиста и беско­нечной длины соответствующего импульса, подобные идеальные фильтры нереализуемы; реализовать их можно только приближенно.

 
 

 
 

а)

Рис. 8.16. Каналы Найквиста для нулевой межсимвольной интер­ференции: а) прямоугольная передаточная функция системы ; б) принятый импульс

Стоит отметить, что названия "фильтр Найквиста" и "импульс Найквиста" часто используются для описания обширного класса фильтраций и импульсных форм, удов­летворяющих условию нулевой межсимвольной интерференции в точках взятия выбо­рок. Фильтр Найквиста — это фильтр, передаточная функция которого может быть представлена прямоугольной функцией, свернутой с любой четно-симметричной час­тотной функцией. Импульс Найквиста — это импульс, форма которого может быть описана функцией ,умноженной на другую временную функцию. Следова­тельно, существует бесконечное множество фильтров Найквиста и соответствующих импульсов. В классе фильтров Найквиста наиболее популярными являются фильтры с характеристикой типа приподнятого косинуса или корня из приподнятого косинуса. Несколько позже эти фильтры будут рассмотрены подробно.

Основным параметром систем связи является эффективность использования полосы, ,измеряемая в бит/с/Гц. Как можно понять из единиц измерения, представ­ляет меру скорости переноса данных на единицу ширины полосы, а значит, показы­вает, насколько эффективно любой метод передачи сигналов использует ресурс полосы.

 

Характеристики канала

Многие каналы связи (например, телефонные или беспроводные) можно охарактери­зовать как узкополосные линейные фильтры с импульсной характеристикой h,(t) и частотной характеристикой

Hc(f) =\Hc(f)\eio(f) ,

где hc(t) и Hc(f) — Фурье-образы друг друга, с(f)\ — амплитудная характеристика кана­ла,

а Oc(f) — фазовая характеристика канала.

 

Тема лекции 9.. Полосовая модуляция и демодуляция

 

Цифровая модуляция – это процесс преобразования цифровых символов в сигналы, совместимые с характеристиками канала. При низкочастотной модуляции (baseband modulation) эти сигналы обычно имеют вид импульсов заданной формы. В случае полосовой модуляции (bandpass modulation) импульсы заданной формы модулируют синусоиду, называемую несущей волной (carrier wave), или просто несущей (carrier); для радиопередачи на нужное расстояние несущая преобразуется в электромагнитное поле. Может возникнуть вопрос: зачем для радиопередачи низкочастотных сигналов нужна несущая? Ответ звучит следующим образом. Передача электромагнитного поля через пространство выполняется с помощью антенн. Размер антенны зависит от длины волны λ и текущей задачи. Для переносных телефонов размер антенны обычно равен λ /4, а длина волны с/f, где с – скорость света, 3 ∙ 108 м/с. Рассмотрим передачу низкочастотного сигнала (скажем, имеющего частоту f = 3000 Гц), поступающего прямо в антенну без использования несущей. Какая антенна нам понадобится? Возьмем стандарт телефонной промышленности, λ /4. Получаем, что для сигнала 3000 Гц λ /4 = 2,5 ∙ 104м = 25 км. Итак, для передачи через пространство сигнала с частотой 3000 Гц без модулирования несущей требуется антенна размером 25 км

 


. При этом, если низкочастотная информация модулируется несущей более высокой частоты, например 900 МГц, размер антенны будет составлять порядка 8 см. Приведенные вычисления показывают, что модулирование несущей частоты, или полосовая модуляция, – это этап, необходимый для всех систем, использующих радиопередачу.

Полосовая модуляция имеет и другие важные преимущества при передаче сигналов. При использовании одного канала более чем одним сигналом, модуляция может применяться для разделения различных сигналов. Подобный метод, известный как уплотнение с частотным разделением (frequency-division multiplexing – FDM), рассматривается в главе П. Модуляция мoжет использоваться и для минимизации последствий интерференции. Класс схем модуляции, известный как модуляция расширенным спектром, требует полосы, значительно превышающей минимальную полосу, необходимую для передачи сообщения. В главе 12 рассмотрены компромиссы, связанные с выбором полосы, снижающим интерференцию. Кроме того, модуляция может использоваться для перемещения cигнала в диапазон частот, в котором легко удовлетворяются специфические конструктивные требования, например, относящиеся к фильтрации и усилению. Примером такого применения модуляции является преобразование в приемнике радиочастотных сигналов в сигналы промежуточной частоты.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-15 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: