Третья оздоровительная смена




Подготовительный этап

· Создание творческой группы по разработке идеи смены «Космическая одиссея дружбы»; определение целей и задач, разработка общелагерных и отрядных творческих дел, развивающих программ творческих мастерских.

· Изучение литературы по тематике смены.

· Изучение методической литературы по инновационным технологиям в сфере организации летнего отдыха.

· Формирование вожатского отряда и его подготовка к предстоящей смене.

· Организация работы Школы вожатого.

· Организация семинара-практикума для педагогического коллектива лагеря

· Первичное создание коллектива единомышленников, способного реализовать цель программы.

· Разработка музыкального и художественного оформления смены.

 

Организационный этап

· Заезд детей, распределение по отрядам с учетом возрастных категорий, знакомство с лагерем.

· Организация жизнедеятельности лагеря.

· Проведение отрядных «огоньков» — начальный этап формирования коллектива в от­ряде.

· Вовлечение воспитанников в сюжетно-ролевую игру: заезд участников, открытие смены.

· Обустройство и оформление отрядных мест.

· Формирование актива групп различных уровней, коллективное планирование смены.

· Корректировка плана смены.

 

Основной этап

· Становление и развитие отношений в коллективах различных уровней (в отряде, ла­гере, между взрослыми и детьми).

· Организация и проведение общелагерных мероприятий, КТД.

· Занятия в творческих мастерских.

· Работа психолога по коррекции эмоционального климата в отрядах и лагере в целом.

 

Заключительный этап

· Выход из сюжетно - ролевой игры «Космическая одиссея дружбы».

· Подведение итогов работы творческих мастерских.

· Самооценка личных достижений каждого члена коллектива и степени его роста, а также степени развития внутриколлективных отношений.

· Итоговая диагностика детского коллектива

· Закрытие смены.

 

История космологии

Ранние формы космологии представляли собой религиозные мифы о сотворении (космогония) и уничтожении (эсхатология) существующего мира.

В китайской космологии считалось, что Земля — своего рода чаша, прикрытая небом, состоящая из полусфер, вращающихся на очень низком расстоянии от Земли.

Новаторский характер носит космология Николая Кузанского, изложенная в трактате Об учёном незнании. Он предполагал материальное единство Вселенной и считал Землю одной из планет, также совершающей движение; небесные тела населены, как и наша Земля, причём каждый наблюдатель во Вселенной с равным основанием может считать себя неподвижным. По его мнению, Вселенная безгранична, но конечна, поскольку бесконечность может быть свойственна одному только Богу. Вместе с тем, у Кузанца сохраняются многие элементы средневековой космологии, в том числе вера в существование небесных сфер, включая внешюю из них — сферу неподвижных звёзд. Однако эти «сферы» не являются абсолютно круглыми, их вращение не является равномерным, оси вращения не занимают фиксированного положения в пространстве. Вследствие этого у мира нет абсолютного центра и чёткой границы (вероятно, именно в этом смысле нужно понимать тезис Кузанца о безграничности Вселенной)[5].

Первая половина XVI века отмечена появлением новой, гелиоцентрической системы мира Николая Коперника. В центр мира Коперник поместил Солнце, вокруг которого вращались планеты (в числе которых и Земля, совершавшая к тому же ещё и вращение вокруг оси). Вселенную Коперник по-прежнему считал ограниченной сферой неподвижных звёзд; по-видимому, сохранялась у него и вера в существование небесных сфер[6].

Модификацией системы Коперника была система Томаса Диггеса, в которой звёзды располагаются не на одной сфере, а на различных расстояниях от Земли до бесконечности. Некоторые философы (Франческо Патрици, Ян Ессенский) заимствовали только один элемент учения Коперника — вращение Земли вокруг оси, также считая звёзды считались разбросанными во Вселенной до бесконечности. Воззрения этих мыслителей несут на себе следы влияния герметизма, поскольку область Вселенной за пределами Солнечной системы считалась ими нематериальным миром, местом обитания Бога и ангелов[7].

На данный момент (2011 год) основные усилия астрономов, работающих в наблюдательной космологии, устремлены, в основном, в две области:
историю развития Вселенной: от ранних этапов и до наших дней;
космологическую шкалу расстояний и связанное с ней явление расширения Вселенной.

Почти вся информация о Вселенной, известная на данный момент — косвенна. Как правило, сначала делаются некие предположения, а потом они проверяются.

На данный момент лишь следующие факты можно считать твёрдо установленными:

Звёздная астрономия

Планетарная туманность Муравья — Mz3. Выброс газа из умирающей центральной звезды показывает симметричную модель, в отличие от хаотических образов обычных взрывов.
Основная статья: Звезда

Изучение звёзд и звёздной эволюции имеет фундаментальное значение для нашего понимания Вселенной. Астрофизика звезд развивалась на основе наблюдений и теоретического понимания, а сейчас и с помощью компьютерного моделирования.

Формирование звезд происходит в областях плотной пыли и газа, известных как гигантские молекулярные облака. Если происходит дестабилизация, то фрагменты облака могут сжаться под воздействием гравитации и сформировать протозвезду. Достаточно плотные и горячие области вызовут термоядерные реакции, таким образом начнется главная последовательность звезды.[2]

Почти все элементы, более тяжелые чем водород и гелий, создаются внутри ядра звезды.

 

Телескоп "Кеплер" нашел сотни внесолнечных планет

 

Еще каких-нибудь четверть века назад астрономы могли только предполагать, что во Вселенной есть другие планеты - оснований считать Солнечную систему уникальной у ученых не было, но не было и фактических доказательств наличия планет у других звезд. Первое свидетельство того, что в космосе есть больше одной звезды, обладающей планетами, было получено в 1988 году, а окончательно подтвердить гипотезу о существовании внесолнечных планет ученые смогли еще через 14 лет. Столь медленный прогресс в области поиска и изучения экзопланет (так специалисты называют планеты за пределами Солнечной системы) объясняется просто - эти объекты практически не испускают излучения и обнаружить их на фоне чрезвычайно яркого блеска звезд очень сложно. Именно поэтому основные методы обнаружения внесолнечных планет - косвенные. Например, специалисты анализируют периодические сдвиги спектра звезды то в коротковолновую, то в длинноволновую области – такие колебания указывают, что вокруг звезды обращается планета, гравитация которой "оттаскивает" за собой излучение. Или же ученые отслеживают колебания самого светила - достаточно массивная планета может вызывать заметные изменения в положении звезды. Еще один вариант - наблюдение за колебаниями яркости звезды, происходящими из-за того, что между ней и наблюдателем проходит планета. Последний метод получил название транзитного. С течением времени телескопы становились все более "зоркими", и в 2008 году астрономам впервые удалось непосредственно сфотографировать несколько экзопланет. В начале января 2010 года группа исследователей опубликовала не менее впечатляющие данные - ученые смогли напрямую получить спектр экзопланеты, при помощи которого можно узнать состав планеты и ее атмосферы. Этот результат тем более ценен, что авторы работали с наземными телескопами (а именно с массивом телескопов VLT). Наблюдения при помощи таких телескопов заметно осложняются из-за наличия атмосферы, которая искажает получаемые изображения. Но по-настоящему новая эпоха в деле поиска экзопланет началась седьмого марта 2009 года, когда в космос был запущен телескоп "Кеплер". Он следует за нашей планетой, постепенно удаляясь от нее, а орбита телескопа, работающего по транзитному методу, подобрана так, что ни Луна, ни Солнце не попадают в его поле зрения. То есть "Кеплер" непрерывно "смотрит" на один и тот же участок неба между созвездиями Лебедя и Лиры и фиксирует изменения яркости находящихся там звезд. В общей сложности телескоп наблюдает около 4,5 миллиона светил. "Кеплер" оснащен чрезвычайно чувствительной оптикой, способной фиксировать даже самые незначительные изменения яркости звезд, вызываемые прохождением по их диску планет небольших размеров (расчеты показывают, что телескоп может находить даже спутникиэкзопланет). Размер внесолнечных планет имеет очень большое значение для астрономов - у жизни земного типа нет шансов зародиться на крупных и тяжелых экзопланетах с колоссальной гравитацией (впрочем, не все большие планеты тяжелы - но об этом чуть ниже). До вывода на орбиту "Кеплера" астрономы находили, в основном огромные планеты, размер которых в несколько раз превосходил размеры Юпитера, и некоторые специалисты полагали, что во Вселенной в основном распространены именно гиганты. Телескоп приступил к "потоковому" поиску экзопланет в мае 2009 года. Начиная с этого момента в прессе периодически появлялись сообщения о новых обнаруженных "Кеплером" планетах (преимущественно газовых гигантах), но более или менее систематизированный отчет появился в июне 2010 года. В документе были перечислены результаты работы телескопа, полученные в течение первых 43 дней на орбите. За это время "Кеплер" обнаружил 706 экзопланет, но к июню специалисты обработали информацию только о 306 из них. Публикация отчета сопровождалась скандалом - одновременно с появлением документа один из астрономов, занимающийся анализом собранных "Кеплером" данных, якобы сообщил об обнаружении 140 планет земного типа. Позже оказалось, что ученый сказал не совсем это (а точнее, совсем не это) - подробнее о произошедшем недоразумении можно прочитать здесь. Дату следующего отчета назначили на февраль 2011 года. ретьего февраля итоги анализа очередной порции переданной "Кеплером" информации былиопубликованы в авторитетном научном журнале Nature. Вместе с новыми данными общее число найденных телескопом планет возросло до 1235. Эти планеты обращаются вокруг 997 звезд, удаленных от Солнечной системы на расстояние от 500 световых лет до 3 тысяч световых лет. Размер 68 обнаруженных планет сравним с размером Земли, а 288 относятся к классу так называемых Суперземель (то есть они больше нашей планеты, но существенно меньше газовых гигантов вроде Юпитера или Сатурна). Еще 662 планеты по диаметру сравнимы с Нептуном, 165 - с Юпитером, а 19 из найденных небесных тел больше самой крупной планеты Солнечной системы. Около полусотни новых планет интересуют астрономов особо - 54 объекта располагаются в так называемой зоне обитаемости своих звезд. На планетах, располагающихся внутри зоны обитаемости, может присутствовать жидкая вода - необходимое условие для возникновения жизни земного типа. У разных типов звезд зона обитаемости находится на различном расстоянии - например, для более горячих, чем Солнце, светил она будет располагаться дальше, чем зона обитаемости нашей звезды. Из всех найденных телескопом планет в зоне обитаемости только пять по размеру сравнимы с Землей. Масса остальных находится в промежутке от двух масс Земли до юпитерианской массы и более. Но ставить крест на этих "здоровяках" пока рано - луны крупных планет из зоны обитаемости вполне могут оказаться пригодными для живых существ. Еще одна интересная находка "Кеплера" - это планетная система похожей на Солнце звезды Kepler-11, удаленной от Земли на 2 тысячи световых лет. Вокруг этого светила возрастом восемь миллиардов лет обращаются сразу шесть планет - это самая большая из известных планетных систем, не считая Солнечной системы. Еще более исключительной систему Kepler-11 делает то, что все шесть планет расположены в одной плоскости. Вероятность найти такую систему, по оценкам некоторых астрономов, составляет 1 к 10 тысячам. Орбиты пяти планет умещаются внутри орбиты Меркурия - они совершают один оборот вокруг Kepler-11 за период от 10 до 47 дней. Расстояние от звезды до шестой планеты вдвое меньше, чем дистанция от Земли до Солнца. По размеру все планеты в системе Kepler-11 обгоняют Землю - самая большая из них сравнима с Нептуном. При этом масса этих небесных тел относительно невелика для их диаметра. По плотности внешние планеты звезды Kepler-11 можно сравнить с зефиром (имеется в виду мягкий тянущийся зефир, который в английском языке называется marshmallow) - они окружены очень плотной атмосферой из водорода и гелия, которая составляет до 20 процентов массы этих небесных тел. Атмосфера двух внутренних планет заметно тоньше. Помимо системы Kepler-11 телескоп обнаружил еще одну систему из пяти планет, восемь - из четырех и более сотни систем, состоящих из двух и трех планет. Изучение многопланетных систем позволит ученым прояснить многие вопросы относительно формирования Солнечной системы. Кроме того, факт обнаружения "Кеплером" множества систем, состоящих более чем из одной планеты, указывает, что подобные системы весьма распространены во Вселенной. Новые результаты, полученные телескопом, также подтверждают, что не являются редкостью и небольшие планеты, некоторые из которых могут оказаться вполне комфортными для живых существ. Более того, не исключено, что после завершения миссии "Кеплера" (планируется, что телескоп проработает 3,5 года) этот вывод можно будет делать еще более уверенно. Пока телескоп достоверно обнаруживает только те планеты, которые обращаются недалеко от своих звезд - за относительно небольшой промежуток времени они успевают сделать несколько оборотов вокруг светила и "подтвердить" свое существование. Через пару-тройку лет "Кеплер" сможет несколько раз "засечь" небольшие планеты, находящиеся на орбитах, сравнимых с орбитой Земли. И уже эти небесные тела станут объектом интенсивного поиска признаков жизни. Ирина Якутенко, Lenta.ru
Обнаруженна звезда одна из самых горячих в Галактике

 

Это, возможно, самая горячая звезда, известная астрономам. Температура ее поверхности составляет около 200 тыс. градусов, а, может быть, и больше. NGC 6302 (другие обозначения — PK 349+1.1, ESO 392-PN5, она же туманность Жук, она же Бабочка) — планетарная туманность в созвездии Скорпион - один из самых любимых объектов астрономов. NGC6302 относится к классу планетарных туманностей, названных так за частое сходство с дисками планет, если смотреть на них в небольшие телескопы. По сути, это внешние слои старых и относительно небольших звезд, жизнь которых заканчивается не взрывом сверхновой, а более или менее спокойным сбросом оболочки в окружающее пространство. В центре этой оболочки остается так называемый белый карлик — звезда крохотная, но поначалу очень горячая (ведь она недавно была ядром звезды). Так, кстати, свою жизнь скорее всего закончит и Солнце. В белых карликах ядерные реакции не идут, и от окончательного коллапса их удерживает чисто квантовый эффект — давление вырожденного электронного газа. В отсутствие ядерных реакций звезде остается лишь остывать, за миллиарды лет превращаясь в холодный и очень плотный звездный "труп” массой примерно с массу Солнца и размером где-то с диаметр Земли. Однако прежде, чем остыть окончательно, белые карлики подсвечивают сброшенный прежде газ очень горячим излучением, то есть фотонами очень высокой энергии. Газ каскадом атомных превращений перерабатывает каждый такой фотон в десятки и сотни фотонов видимого диапазона. Это свечение и называется планетарной туманностью. NGC6302 не только одна из самых красивых, но и одна из самых экстремальных планетарных туманностей. Характерную форму песочных часов сброшенному в космическое пространство газу наверняка придал плотный газопылевой бублик, окружающий оставшийся в центре объект. Судя по скорости расширения оболочки, она была сброшена 2−2,5 тыс. лет назад (с поправкой на 3,5 тыс. лет, которые до нас летел свет от этого объекта), так что еще древние греки могли увидеть здесь не планетарную туманность, а не очень яркую (опять же из-за большого расстояния) красную звезду. За два с лишним тысячелетия оболочка расползлась почти на световой год в каждую сторону, так что сейчас туманность занимает на небе участок в пятую часть Луны в поперечнике. И что самое поразительное, она светится так, будто ее ионизуют фотоны, соответствующие температуре в сотни тысяч градусов. Это излучение должен испускать центральный белый карлик Жука, однако увидеть его еще ни разу не удавалось — здесь слишком сильны фон свечения газа и поглощение света пылевым бубликом. Хотя несколько лет назад Микако Мацуура и ее коллеги смогли обнаружить вблизи центра Жука непонятный точечный объект с помощью радиотелескопа, он так и не получил признания как центральный белый карлик NGC6302. И, как теперь выясняется, совершенно правильно не получил — настоящее сердце космического Жука находится на 2,5 угловых секунды южнее. Ученые также оценили возраст и массу белого карлика, вписав модель остывания таких объектов в полученные с помощью «Хаббла» данные. Масса оказалась около 0,64 массы Солнца, а возраст — примерно 2,2 тыс. лет, в превосходном соответствии с возрастом планетарной туманности. Что особенно приятно, эту работу можно будет надежно проверить в течение ближайших лет. При такой безумной светимости и отсутствии ядерных реакций звезда быстро теряет запасенную в тепле энергию и должна быстро остывать и терять в блеске. По оценкам ученых, этот спад светимости должен составлять около 0,8−1% в год. Такую величину несложно измерить. А если повезет, то со временем можно будет даже увидеть, как угасание расползается по планетарной туманности. В конце концов, чтобы добраться до края газового облака, свету требуется около года. Именно с такой задержкой яркость крыльев Жука реагирует на падение блеска его центральной звезды.

 

Кадровое обеспечение

Третья оздоровительная смена

«Космическая одиссея Дружбы»

 

Ст. вожатая – Макшанцева Е.С.

 

1. Попова Е. В. - вожатая

2.Якшева М.А.- вожатая

3. Лобанов Р.С. - ПДО

4. Чмыхова В.В. - вожатая

5. Луговин А.П. - вожатый

6. Муратов Н.С. - воспитатель

7. Ломакина А.В. - вожатая

8.Мочалова А.А. - вожатая

9.Истомина Е.В. - вожатая

10.Жовтобрюх А.А. - вожатый

11.Попов А.И. -вожатый

12.Климова О.С. - воспитатель

13. Никонорова В.И. – вожатая

14. Сеченова В.В. – вожатая

15. Одинцов И.С- музрук

16. Елагина В.Н. – воспитатель

17. Ларина Т.Г. - психолог

18. Струговщикова А.Н. – воспитатель

19. Вершков А.М. - вожатый

20. Хлыстун А.К. - вожатая

 

ПРИЛОЖЕНИЯ



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-15 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: