Начальный момент r–го порядка случайной величины




Формулы по теории вероятности

I. Случайные события

Основные формулы комбинаторики

а) перестановки .

б) размещения

в) сочетания .

Классическое определение вероятности.

, где - число благоприятствующих событию исходов, - число всех элементарных равновозможных исходов.

Вероятность суммы событий

Теорема сложения вероятностей несовместных событий:

Теорема сложения вероятностей совместных событий:

Вероятность произведения событий

Теорема умножения вероятностей независимых событий:

Теорема умножения вероятностей зависимых событий:

,

- условная вероятность события при условии, что произошло событие ,

- условная вероятность события при условии, что произошло событие .

Формула полной вероятности

, где - полная группа гипотез, то есть , - достоверное событие.

Формула Байеса (формула Бейеса). Вычисление апостериорных вероятностей гипотез

, где - полная группа гипотез.

Формула Бернулли

- вероятность появления события ровно раз при независимых испытаниях, - вероятность появления события при одном испытании.

Наивероятнейшее число наступления события.

Наивероятнейшее число появления события при независимых испытаниях:

, - вероятность появления события при одном испытании.

Локальная формула Лапласа

- вероятность появления события ровно раз при независимых испытаниях, - вероятность появления события при одном испытании, .

Интегральная формула Лапласа

- вероятность появления события не менее и не более раз при независимых испытаниях, - вероятность появления события при одном испытании, .

11. Оценка отклонения относительной частоты от постоянной вероятности :

.

II. Случайные величины

Ряд распределения дискретной случайной величины

…….
…….

Сумма вероятностей всегда равна 1.

Функция распределения (интегральная функция распределения)

Функция распределения случайной величины определяется по формуле . Это неубывающая функция, принимающая значения от 0 до 1. Если задана плотность распределения , то функция распределения выражается как .

Функция распределения (интегральная функция распределения)

Плотность распределения случайной величины определяется по формуле . Существует только для непрерывной случайной величины. Для нее выполняется условие нормировки: (площадь под кривой равна 1).

Вероятность попадания случайной величины в заданный интервал

Может быть вычислена двумя способами:

1) через функцию распределения

2) через плотность распределения

Математическое ожидание случайной величины

1) Для дискретной случайной величины , заданной рядом распределения:

1) Для непрерывной случайной величины , заданной плотностью распределения:

.

Дисперсия случайной величины

По определению дисперсия – это второй центральный момент: .

1) Для дискретной случайной величины , заданной рядом распределения:

1) Для непрерывной случайной величины , заданной плотностью распределения:

Среднее квадратическое отклонение случайной величины

Начальный момент r–го порядка случайной величины

.

В частности, первый начальный момент – это математическое ожидание:



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-12-29 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: