Замечательные пределы. Сравнение бесконечно малых величин




Определение предела функции

 

Число называется пределом функции при , если для любого сколь угодно малого найдется , такое что для всех значений , удовлетворяющих неравенству , выполнено неравенство .

При этом пишут или . В символах математического анализа определение может быть записано так:

.

Выше приведено определение для случая конечных значений и . Оно может быть переделано для случаев, когда или обращаются в бесконечность . При этом соответствующие неравенства должны быть заменены на неравенства типа , если , ,если , , если и т.п.

Переменная величина называется бесконечно малой величиной при , если .

Пусть , где – конечные числа, – любое конечное число или бесконечность.

Теоремы о пределах:

1. .

2. .

3. Если .

4. Пусть – конечное число. Тогда:

а)

б)

в) .

5. Пусть , тогда . ●

Функция называется непрерывной в точке , если она определена в этой точке и . Для непрерывной функции возможен переход к пределу под знаком функции.

Предельные переходы, содержащие нуль или бесконечность, при кратко можно записать так:

, (1)

где выражение, заключенное в квадратные скобки, понимается как предельное значение. Выражения вида:

, (2)

─ называются неопределенностями, что означает, что нельзя дать ответ, используя правила (1), Например, рассмотрим три функции: при . Отношение любых двух функций из указанных трех приводит к неопределенности . Однако, пределы этих отношений различны, например:

, , .

Неопределенности (2) всегда можно перевести из одной в другую. Кроме указанных выражений неопределенностями являются предельные выражения:

.

При вычислении пределов сначала подставляется предельное значение переменной. Если выполнены условия теорем, то сразу получаем ответ. Если при подстановке получается неопределенность, то следует предварительно преобразовать выражение, а затем подставить предельное значение.

Рассмотрим несколько примеров на вычисление пределов.

1. .

2. .

3. .

4. .

5. .

6. .

7. .

8. .

9. .

10. .

11. .

12. .

13.

В примерах 1─3,6─8 можно сразу записать ответ. В остальных примерах первая подстановка приводит к неопределенности, поэтому: сначала проводим преобразование. Так в примере 13 мы умножили числитель и знаменатель на сопряженное выражение, что позволило затем сократить дробь. Обратите внимание, что выражение , и это позволило вынести множитель за знак предела.

Проанализировав решения примеров 9–11, замечаем, что при вычислении пределов типа , приходим к пределу отношения членов со старшими степенями. Окончательный ответ зависит от соотношения степеней. Аналогичная ситуация и для выражений, содержащих дробные степени или радикалы.

Например, вычисляя , приходим к неопределенности . Выбрав в числителе и знаменателе слагаемые со старшими степенями . получаем решение:

.

Односторонние пределы

 

Если , оставаясь больше (или меньше) , то такие пределы называются односторонними пределами или пределами справа (слева). Стремление переменной к предельному значению слева будем записывать при стремлении справа , а сами предельные значения функции или . При или также имеем односторонние пределы: и . Сравните два предела

, .

Как указано в первом разделе: функция называется непрерывной в точке , если она определена в этой точке и . Если функция не является непрерывной в точке , то говорят, что функция имеет разрыв в точке . Разрывы функции имеют три типа и связаны с поведением функции слева и справа от точки разрыва.

1. Устранимый разрыв. Существуют левосторонний и правосторонний пределы, оба предела конечны, равны между собой, а функция не определена в точке :

.

2. Разрыв первого рода (скачок). Существуют левосторонний и правосторонний пределы, оба предела конечны, но они не равны между собой.

3. Разрыв второго рода. Один из пределов или оба обращаются в бесконечность или не существуют.

Все элементарные функции непрерывны в области своего определения.

Пример 1. Исследовать поведение функции на границе ее области определения.

Решение. .

Определим пределы функции в граничных точках и при :

Пример 2. Исследовать поведение функции на границе ее области определения.

Решение. .

Определим пределы функции в граничных точках и при . Заметим, что каждая из точек граничной точкой является дважды. Поэтому в этих точках вычислим односторонние пределы:

 

Замечательные пределы. Сравнение бесконечно малых величин

 

В приведенных выше примерах нам было достаточно несложных алгебраических преобразований для получения ответа. Иная ситуация возникает, если выражение содержит трансцендентные функции, типа синуса, логарифма и другие. В этом случае нам помогут некоторые пределы, называемые в математике «замечательными» пределами и сравнение бесконечно малых величин между собой.

Первый замечательный предел: ,

Второй замечательный предел: , или , - иррациональное число.

Сравнение бесконечно малых величин между собой определяется через предел их отношения. Пусть и бесконечно малые величины при . Правила сравнения запишем в таблицу:

Величины одного порядка малости  
Эквивалентные величины . Читается: эквивалентно при .
Величина имеет больший порядок малости по сравнению с величиной . Читается: есть - малое по сравнению с при .
не существует Величины не сравнимы между собой  

 

На основании замечательных пределов можно получить таблицу эквивалентных величин при .

 

Заметим, что слева в формулах стоят различные функции, а сравниваются все они со степенной функцией, наиболее простой для работы.

Примеры сравнений:

.

Теорема. Пустьпри . Тогда справедливы равенства:

, . ●

Примеры на вычисление пределов с использованием таблицы эквивалентных величин:

, .

Если при вычислении пределов с неопределенностью переменная стремится к числу, отличному от нуля, то для возможности использовать таблицу, сначала необходимо сделать замену переменной. Например:

.

Пояснения к решению примера. Подставив предельное значение в заданный пример, получили неопределенность вида , т.е. отношение бесконечно малых величин. Но таблицей воспользоваться нельзя, так как таблица справедлива только для случая, если переменная стремится к нулю. Сделаем замену переменной (замена выделена вертикальными линиями) и преобразуем выражение. Подставив новую переменную в выражение для предела, снова получаем неопределенность , но теперь мы уже могли воспользоваться таблицей эквивалентных величин, что и было сделано.

Вычисление пределов при неопределенности . Можно предложить несколько способов. Рассмотрим пример: вычислить . Непосредственная подстановка предельного значения приводит к неопределенности .

Первый способ – логарифмировать заданное выражение. Обозначив заданную функцию , получаем

,

.

Следовательно, .

Второй способ ─ построение выражения в виде :

.

Производная функции

Пусть функция определена в точке и ее окрестности. Если существует конечный предел

, (3)

то этот предел называется производной функции в точке и обозначается или .

При существовании односторонних пределов или говорят о существовании односторонних производных.

Функция, имеющая в каждой точке промежутка конечную производную, называется дифференцируемой функцией на этом промежутке.

Вычисляется производная с использованием таблицы производных и согласно правилам дифференцировании.

Правила дифференцирования
const     I. . II. . III. . IV. . V. . VI. (дифференцирование сложной функции)/ VII. .   АЛГОРИТМ вычисления производных: · Найти последнее действие (функцию). · Применить формулы I–V. · Применить таблицу производных. Замечание. Выражения , следует предварительно преобразовать по формулам: ; ; ;
 

Производная от первой производной называется второй производной или производной второго порядка и обозначается или . Аналогично определяются производные более высоких порядков.

Геометрический смысл производной. Пусть функция непрерывна на промежутке в окрестности точки , а график функции имеет в этой точке касательную, не параллельную оси . Тогда

, (4)

где – угол между положительным направлением оси и касательной (рис. 1).

Рис. 1

Уравнение касательной к графику функции в точке имеет вид

. (5)

Пример 3. Найти производную функции в точке .

Решение. . .

Пример 4. Найти производную функции в точке .

Решение. Заданная функция – сложная. Используем формулу дифференцирования сложной функции.

Тогда .

 

Правило Лопиталя

 

Теорема. Пусть функции 1) и определены в окрестности точки и существуют конечные производные, 2) , 3) существуют конечные производные и , причем , 4) существует предел , Тогда

. ●

Здесь приведена одна из теорем Лопиталя. Аналогичное правило вычисления предела справедливо д с неопределенностью .

Примеры вычисления пределов с помощью правила Лопиталя:

1. ,

2. ,

3. .

Во втором примере мы применили правило Лопиталя 4 раза. В третьем примере правило Лопиталя не применимо, так как не существует предела производных. Нет лекарства от всех бед. Предел же легко вычисляется с использованием теорем и равен единице.

Рекомендуем запомнить пределы:

, .



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: