Продуктивные модели Леонтьева




 

Определение. Матрица А ≥ 0 называется продуктивной, если для любого вектора у ≥ 0 существует решение х ≥ 0 уравнения

 

х = Ах + у (2.4)

 

В этом случае модель Леонтьева, определяемая матрицей А, тоже называется продуктивной. Другими словами, модель продуктивна, если любое конечное потребление у можно обеспечить при подходящем валовом выпуске х.

Уравнение Леонтьева (2.4) можно записать следующим образом:

 

(Е – А)х = у, (2.5)

 

где Е – единичная матрица. Возникает, естественно, вопрос об обращении матрицы Е – А. Понятно, что если обратная матрица (Е – А)-1 существует, то из (2.5) вытекает

 

х = (Е – А)-1 у. (2.6)

 

Теорема 1 (первый критерий продуктивности).

Матрица А ≥ 0 продуктивна только тогда, когда матрица (Е – А)-1 существует и неотрицательна.

Доказательство.

Если матрица (Е – А)-1 существует и неотрицательна, то из (2.6) сразу же следует продуктивность матрицы А.

Обратно, пусть матрица А продуктивна. Рассмотрим следующие системы уравнений:

 

(Е – А)х = е1, (Е – А)х = е2, …, (Е – А)х = еn,

 

Где е1, е2, …, еn – столбцы единичной матрицы. Каждая из этих систем в силу продуктивности матрицы А имеет неотрицательное решение, т.е. существуют такие векторы (столбцы) с1 ≥ 0, с2 ≥ 0, …, сn ≥ 0, что

 

(Е – А)с1 = е1, (Е – А)с2 = е2, …, (Е – А)сn = еn (2.7)

 

Обозначим через С матрицу, составленную из столбцов с1 с 2, …, с n. Тогда вместо n равенств (2.7) можно написать одно:

 

(Е – А)С = Е.

 

Следовательно, матрица Е-А имеет обратную С, причем С ≥ 0.

Теорема доказана.

Теорема 2 (второй критерий продуктивности).

Неотрицательная квадратная матрица А продуктивна тогда и только тогда, когда её число Фробениуса меньше единицы.

Доказательство.

Пусть неотрицательная матрица А продуктивна. Тогда для любого неотрицательного вектора у существует решение х ≥ 0 уравнения (2.4) Пусть у > 0, тогда, очевидно, х > 0. Умножив равенство (2.4) слева на левый вектор Фробениуса рТА и учитывая, что

 

рТАА = λАрТА, (2.8)

 

получим

 

λ А ТА х) + рТА у = рТА х,

 

или

 

(1 – λА)(рТА х) = рТА у.

 

Так как рТА ≥ 0 и у ≥ 0, х ≥ 0, то рТАу > 0, рТАх > 0. Поэтому из последнего равенства вытекает, что λА < 1.

Обратно, пусть неотрицательная матрица А имеет число Фробениуса λА < 1. Покажем, что она продуктивна. Возьмем неотрицательный вектор у и покажем, что у системы (2.4) существует решение х ≥ 0.

Рассмотрим следующую неотрицательную матрицу размера (n + 1)(n+ 1):

 

а11 а12 … а1n у1

а21 а22 … а2n у2

А = …………….

аn1 аn2 … аnn уn

0 0 … 0 1

 

Где аij – элементы матрицы А и у1, …, уn – координаты вектора у. В более компактной форме матрицу можно записать так:

 

А = А у

0 1

 

Умножая эту матрицу слева на вектор рТ = (0, …, 0,1), легко убедиться, что

 

рТА = рТ.

 

Следовательно, одним из собственных значений матрицы А является вектор λ = 1.

Пусть вектор Х = (х1, …, хn, хn+1) = (х, хn+1) является собственным вектором матрицы А, т.е. АХ = λХ. В силу определения матрицы А эторавносильно тому, что

 

А у х = λ х

0 1 хn+1 хn+1

 

или

 

Ах + у хn+1 = λх,

хn+1 = λ хn+1. (2.9)

 

Если λ ≠ 1, то из второго соотношения системы (2.9) следует, что хn+1 = 0, в силу чего первое уравнение имеет вид Ах = λх. Следовательно, λ – собственное значение матрицы А и, по нашему предположению ‌‌‌|λ| < 1. Таким образом, λА = 1 является положительным и максимальным по модулю собственным значением, следовательно является числом Фробениуса. По теореме Фробениуса-Перрона у матрицы А существует неотрицательный собственный вектор хА = (хА, хn+1), соответствующий λА =1. Очевидно, что хn+1 ≠ 0, так как в противном случае из (2.9) следовало бы, что Ах = х. А это противоречит тому, что число Фробениуса λА < 1. Поэтому мы можем считать, что хn+1 = 1. В силу того, что хn+1 = 1, равенство (2.9) принимает вид

 

АхА + у = хА.

 

Поскольку хА = (хА, хn+1) ≥ 0, то хА ≥ 0.

Следовательно, матрица А продуктивна.

Следствие.

Если для неотрицательной матрицы А и некоторыого положительного вектора у уравнение (2.4) имеет неотрицательное решение х, то матрица А продуктивна.

Доказательство.

Как было уже показано, из существования положительного решения у уравнения (2.4) следует, что λА < 1. На основании теоремы Фробениуса матрица А продуктивна.

Теорема 3 (третий критерий продуктивности).

Неотрицательная матрица А продуктивна тогда и только тогда, когда сходится бесконечный ряд

 

Е + А + А² + … (2.10)

 

Доказательство.

Пусть сходится ряд (2.10). Согласно лемме его сема равна (Е – А)-1. При этом сумма указанного ряда будет неотрицательна, поскольку все слагаемые ряда неотрицательны. Итак, матрица (Е – А)-1 существует и неотрицательна. Отсюда по теореме 1.3 следует продуктивность А.

Обратное утверждение (если А продуктивна, то ряд (2.10) сходится) доказывать не будем.

 

Заключение

 

Модель равновесных цен позволяет, зная величины норм добавленной стоимости, прогнозировать цены на продукцию отраслей. Она также позволяет прогнозировать изменение цен и инфляцию, являющиеся следствием изменения цены одной из отраслей.

Балансовый метод – это метод взаимного сопоставления ресурсов (материальных, трудовых, финансовых) и потребностей в них. Среди множества разновидностей балансового метода наиболее распространен межотраслевой баланс, увязывающий источники и направления использования ресурсов. Как правило, при применении балансового метода производятся вариантные расчеты с помощью вычислительной техники

Межотраслевой баланс представляет собой экономико-математическую модель народного хозяйства, что позволяет проводить многовариантные расчеты структуры общественного производства по заданному объему и структуре конечного продукта. Это имеет важное значение на предварительной стадии составления плана для осуществления вариантов расчетов пропорций, темпов и отраслевой структуры экономики, а также на последующих стадиях планирования для повышения уровня сбалансированности отраслей и анализа межотраслевых связей. Таким образом, разработка межотраслевого баланса является одной из предпосылок развития методологии оптимального планирования.

Данные полученные по модели межотраслевого баланса, дают возможность судить о тенденциях развития технического прогресса, о насыщении экономики производственными фондами, капитальными вложениями, трудовыми ресурсами и т.д. Такой анализ возможен на основе сопоставления матриц прямой и полной фондо-, капитало-, трудоемкости и др.

Межотраслевой баланс, разработанный в трудовых единицах, дает информацию, необходимую для построения рациональной системы цен.

Итак, балансовый метод заключает в себе использование балансов для взаимного сопоставления ресурсов (материальных, трудовых, финансовых) и потребностей в них.

В данной работе была рассмотрена сущность целочисленного программирования. Затронуты специальные методы решения целочисленных задач. Такие задачи возникают при моделировании разнообразных производственно-экономических, технических, военных и других ситуаций. В то же время ряд проблем самой математики может быть сформулирован как целочисленные экстремальные задачи.

 

Задачи такого типа весьма актуальны, так как к их решению сводится анализ разнообразных ситуаций, возникающих в экономике, технике, военном деле и других областях. Эти задачи интересны и с математической точки зрения. С появлением ЭВМ, ростом их производительности повысился интерес к задачам такого типа и к математике в целом.

 


Задача 1

 

Компания производит продукцию двух видов А и В. Обе требуют работы двух цехов сборочного и отделочного. Сведения о производстве:

 

Цех Продукция Вместе необходимо рабочих часов
А В
Сборочный      
Отделочный      
Валовая прибыль на единицу      

 

Компания заинтересована в наибольшей прибыльности этих комбинаций продукции. Найти сколько надо производить продукции А и В, чтобы валовая прибыль была максимальная.

Решение

Введем переменные:

х1 – количество продукции вида А;

х2 – количество продукции вида В.

Строим математическую модель:

Fмах = 5х1 + 32х2 при условиях:

 

1 + 5х2 ≤ 15;

1 + 2х2 ≤ 10.

 

х1 ≥ 0, х2 ≥ 0, т.к. продукция выпускаемая не может быть отрицательной.

Задачу можно решить графическим методом и можно решить или проверить симплекс-методом.

Для решения графическим методом запишем граничные прямые:

 

1) 3х1 + 5х2 = 15;

2) 5х1 + 2х2 = 10.

 

Строим граничные прямые на плоскости, но для этого найдем точки для построения прямых:

 

1) х2 = 0; х1 = 5; х1 = 0; х2 = 3;

2) х2 = 0; х1 = 2; х1 = 0; х2 = 5.

 

ОДЗ – многоугольник ОАВСD.

Для определения ОДЗ (области допустимых значений) необходимо найти направление полуплоскостей.

Для испытания берем точку О(0;0) и подставляем её координаты в неравенство (1) и (2), если неравенство удовлетворяется, то полуплоскость направлена к точке (0;0). При наложении полуплоскостей друг на друга получим ОДЗ.

Строим вектор целевой функции С, перпендикулярно к нему проводим линию уровня (пунктирная линия). Перемещаем линию уровня по ОДЗ в направлении вектора целевой функции С и самая дальняя точка от начала координат – это точка А(0;3) в ней хопт.

Подставим координаты (0;3) в целевую функцию и получим её максимальное значение

Fmах = 5*0 + 3*32 = 96 ед. стоимости в точке А(0;3).

Для получения прибыли равной 96 ед.ст. необходимо включить в план продукцию типа В.

 

 


Список литературы

 

1. Акулич И.Л. Математическое программирование в примерах и задачах. – М.: Высшая школа, 2009.

2. Архангельский Ю.С., Коваленко И.И. Межотраслевой баланс. – К.: Выща шк. Головное изд-во, 2008.

3. Математика в экономике: Учебник: в 2-х ч. Ч.1/ А.С. Солодовников, В.А. Бабайцев, А.В. Браилов, И.Г. Шандра. – 2-е изд., перераб. и доп. – М.: Финансы и статистика, 2009.

4. В.Г.Карманов. Математическое программирование: Учебное пособие – 5-е издание, стереотип-М:ФИЗМАТ, 2011г.-264с.

 

5. А.В.Кузнецов, В.А.Сакович, Н.И.Холод. Высшая математика: Математическое программирование. Ученик - 2-е издание. 2001г. 351с.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-07 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: