Растворение газов в жидкости




При соприкосновении веществ (например, двух жидкостей или газа и жидкости) можно наблюдать процесс растворения: молекулы одного вещества могут проникать в объём, занимаемый другим веществом. В результате растворённое вещество равномерно распределяется по всему объёму растворителя.

Как происходит, например, растворение воздуха в воде? Из-за теплового движения молекулы газов, составляющих воздух, проходят сквозь границу вода-воздух и далее в результате диффузии распространяются по всему объёму воды. Конечно, часть молекул газа, уже проникших в воду, выходит из неё в силу того же теплового движения. Когда число молекул газа, выходящих из жидкости за единицу времени, сравняется с числом молекул, проникающих за это же время в жидкость, полученный раствор становится насыщенным. В таком случае говорят, что жидкость находится в равновесии с газом.

Масса газа, которая может раствориться в единице объема жидкости, называется растворимостью. Растворимость газов в жидкостях зависит от ряда факторов: природы газа и жидкости, давления, температуры.

Растворимость газа в жидкости прямо пропорциональна его давлению над жидкостью. Этим пользуются, например, при газировании воды. При газировании вода приводится в длительное соприкосновение с углекислым газом, имеющим большое давление, поэтому в воде растворяется большое количество углекислого газа.

При нагревании воды растворимость газов уменьшается (см. рисунок). Если оставить в теплом помещении стакан с холодной водой, то внутренняя сторона его стенок покрывается пузырьками газа – это воздух, который был растворен в воде, выделяется из неё вследствие нагревания. Аквариумисты часто сталкиваются с таким явлением: при увеличении температуры воды рыбам становится труднее дышать, они поднимаются к поверхности и заглатывают воздух. Это как раз и связано с уменьшением растворимости кислорода. И растениеводам не рекомендуется поливать цветы кипячёной водой также по этой причине.

 

Зависимость растворимости газов – кислорода, азота и водорода в воде от температуры (при атмосферном давлении)

Растворимость газов в воде увеличивается при

 

1) увеличении температуры жидкости и давления газа

2) уменьшении температуры жидкости и давления газа

3) увеличении температуры жидкости и уменьшении давления газа

4) уменьшении температуры жидкости и увеличении давления газа

 

Конец формы

 

Начало формы

На рисунке 1 в тексте представлены графики зависимости растворимости газов – кислорода, азота и водорода в воде от температуры (при атмосферном давлении).

Какое(-ие) из утверждений является правильным?

А. При атмосферном давлении концентрация азота, растворённого в речной воде, примерно в два раза меньше концентрации кислорода.

Б. При возрастании температуры от 60°С до 100°С растворимость водорода меняется незначительно.

 

1) только А 2) только Б

3) и А, и Б 4) ни А, ни Б

 

Конец формы

 

Начало формы

В насыщенном растворе

 

1) прекращается процесс проникновения молекул газа в жидкость

2) прекращается процесс выхода молекул газа из жидкости

3) скорость процесса проникновения молекул газа в жидкость равна скорости процесса выхода молекул газа из жидкости

4) скорость процесса проникновения молекул газа в жидкость больше скорости процесса выхода молекул газа из жидкости


 

Опыт Штерна

Существуют разнообразные способы определения скоростей движения молекул. Одним из наиболее простых является способ, осуществленный в 1920 г. в опыте Штерна.

Устройство прибора Штерна схематично представлено на рис. 1.

 

Рисунок 1. Схема опыта Штерна

Прибор состоял из двух расположенных вертикально цилиндров радиусов r и R, пространство внутри которых непрерывно откачивалось до очень низкого давления. По общей оси 1 цилиндров располагалась платиновая нить, покрытая тонким слоем серебра. При пропускании по платиновой нити электрического тока она нагревалась до высокой температуры. Серебро начинало испаряться, и его атомы летели к внутренней поверхности цилиндра прямолинейно и равномерно со скоростью V, отвечающей температуре платиновой нити. Щель 2 в стенке малого цилиндра выделяла узкий пучок молекул. Стенки цилиндра R специально охлаждались, чтобы попадающие на неё молекулы «прилипали» к ней, образуя налёт серебра в виде узкой вертикальной полоски М. Затем весь прибор приводился в быстрое вращение с угловой скоростью ω, и тогда налёт серебра получался вдоль образующей N.

Длина S дуги МN равна пути, проходимому точками большого цилиндра за время t полёта молекулы от щели до стенки большого цилиндра. Если обозначить через u скорость движения точек большого цилиндра, то получим уравнение, из которого можно определить скорость движения молекул V:

R−rV=Su

Скорость поступательного движения молекул, измеряемая в опыте Штерна, зависит от

 

1) температуры платиновой нити

2) скорости вращения цилиндров

3) радиуса малого цилиндра

4) радиуса большого цилиндра

 

Конец формы

Начало формы

При увеличении температуры платиновой нити (при прочих неизменных параметрах)

1) увеличится длина дуги S

2) уменьшится длина дуги S

3) увеличится ширина полоски М

4) уменьшится ширина полоски М

 

Конец формы

 

Начало формы

На рисунке представлены экспериментальные данные по определению толщины h осевшего слоя молекул, измеренные по ширине х полоски N.

 

Какое(-ие) из приведённых ниже утверждений следует(-ют) из анализа графика?

А. Не все молекулы серебра имеют одну и ту же скорость при данной температуре.

Б. При увеличении температуры средняя скорость движения молекул увеличивается.

 

1) только А

2) только Б

3) и А, и Б

4) ни А, ни Б

 

Металлические стёкла

Внимание материаловедов давно привлекают так называемые аморфные металлы, или металлические стёкла. В этих соединениях, состоящих из металлических элементов – например, циркония, титана, меди, никеля – отсутствует какая-либо упорядоченная кристаллическая структура.

Каким образом можно металлический расплав заставить перейти в твёрдое, но не кристаллическое, а аморфное состояние, то есть получить металлическое стекло? Для этого надо расплав заставить затвердеть настолько быстро, чтобы атомы вещества остались «замороженными» в тех положениях, которые они занимали, будучи в жидком состоянии, и не успели перестроиться в кристаллическую решётку. Использование специальных методов позволяет достигать скорости охлаждения более 106 град/с и получать металл в стеклообразном аморфном состоянии. Следствием такой аморфной структуры являются необычные магнитные, механические, электрические свойства и коррозионная стойкость аморфных металлических сплавов.

Одним из промышленных способов получения аморфных металлических лент является охлаждение (закалка) тонкой струи жидкого металла на внешней поверхности охлаждаемого вращающегося барабана (рисунок 1) или прокатка расплава между холодными вращающимися валками. Различие состоит том, что при закалке на барабане расплав быстрее охлаждается со стороны, прилегающей к барабану. Метод прокатки расплава позволяет получить хорошее качество обеих поверхностей ленты.

 

Рисунок 1. Схема установки для получения аморфной металлической ленты

Аморфные сплавы находятся в неравновесном состоянии: при нагреве в них может проходить кристаллизация. Поэтому для стабильной работы изделий из аморфных сплавов необходимо, чтобы их рабочая температура не превышала некоторой заданной для каждого сплава максимальной температуры.

Металлические стёкла

 

1) имеют упорядоченную кристаллическую структуру и находятся в равновесном состоянии

2) имеют неупорядоченную аморфную структуру и находятся в равновесном состоянии

3) имеют упорядоченную кристаллическую структуру и находятся в неравновесном состоянии

4) имеют неупорядоченную аморфную структуру и находятся в неравновесном состоянии

 

Конец формы

Начало формы

На рисунке представлены графики зависимости температуры от времени для расплава, подаваемого на вращающийся барабан.

Образованию ленты в аморфном состоянии соответствует(-ют)

1) только график 1

2) только график 2

3) только график 3

4) графики 1 и 2

 

Конец формы

Начало формы

При постепенном увеличении толщины струи расплава, подаваемой на вращающийся холодный барабан (см рис.1),

1) на прилегающей к барабану стороне ленты может начаться рост микрокристаллов

2) на внешней по отношению к барабану стороне ленты может начаться рост микрокристаллов

3) увеличивается скорость охлаждения металлической ленты

4) металлическая лента начинает накручиваться на барабан

Перегретая жидкость

Кипением называется процесс образования большого количества пузырьков пара, всплывающих и лопающихся на поверхности жидкости при её нагревании. На самом деле эти пузырьки присутствуют в жидкости всегда, но их размеры растут, и пузырьки становятся заметны только при кипении. Одной из причин того, что в жидкости всегда есть микропузырьки, является следующая. Жидкость, когда её наливают в сосуд, вытесняет оттуда воздух, но полностью этого сделать не может, и его маленькие пузырьки остаются в микротрещинах и неровностях внутренней поверхности сосуда. Кроме того, в жидкостях обычно содержатся микропузырьки пара и воздуха, прилипшие к мельчайшим частицам пыли.

Жидкость, очищенная от микропузырьков, может существовать при температуре, превышающей температуру кипения. Такая жидкость называется перегретой. Перегретая жидкость находится в неустойчивом состоянии, и процесс закипания в ней может развиваться взрывообразно, если в жидкость попадают частицы, которые могут служить центрами парообразования. Например, если через перегретую жидкость пролетает заряженная частица, то образующиеся вдоль её траектории ионы становятся центрами парообразования. На основе этого эффекта, открытого Д. Глезером, в 1953 году была создана пузырьковая камера – прибор для регистрации элементарных частиц. След (трек) заряженной частицы, пролетающей через камеру с перегретой жидкостью, виден на фотографии как линия, вдоль которой образуются пузырьки.

Длина пробега частицы (длина трека) зависит от заряда, массы, начальной энергии частицы и плотности среды, в которой проходит движение. Длина пробега увеличивается с возрастанием начальной энергии частицы и уменьшением плотности среды. При одинаковой начальной энергии тяжёлые частицы обладают меньшими скоростями, чем лёгкие. Медленно движущиеся частицы взаимодействуют с атомами среды более эффективно и быстрее растрачивают имеющийся у них запас энергии, то есть длина их трека будет меньше.

В одном из двух одинаковых сосудов при комнатной температуре и нормальном атмосферном давлении находится свеженалитая сырая вода, в другом – такое же количество воды, подвергшейся предварительному длительному кипячению. В каком из сосудов при нагревании на одинаковых плитках вода закипит быстрее? Ответ поясните.

Конец формы

 

Начало формы

Протон и альфа-частица, имеющие одинаковую начальную энергию, влетели в пузырьковую камеру. При этом

 

1) треки частиц на фотографии будут неразличимы, так как частицы имеют одинаковую начальную энергию

2) треки частиц на фотографии будут неразличимы, так как обе частицы имеют положительный заряд

3) длина пробега протона будет больше, так как начальная скорость движения протона больше

4) длина пробега протона будет меньше, так как начальная скорость движения протона меньше

 

 

Перегретая жидкость – это жидкость, которая

 

1) имеет температуру выше 100 °С

2) имеет температуру выше температуры кипения при данном давлении

3) содержит микропузырьки пара и воздуха во всем объёме

4) содержит заряженные частицы


 

Пересыщенный пар

Что произойдёт, если сосуд с некоторым количеством жидкости закрыть крышкой? Наиболее быстрые молекулы воды, преодолев притяжение со стороны других молекул, выскакивают из воды и образуют пар над водной поверхностью. Этот процесс называется испарением воды. С другой стороны, молекулы водяного пара, сталкиваясь друг с другом и с другими молекулами воздуха, случайным образом могут оказаться у поверхности воды и перейти обратно в жидкость. Это есть конденсация пара. В конце концов при данной температуре процессы испарения и конденсации взаимно компенсируются, то есть устанавливается состояние термодинамического равновесия. Водяной пар, находящийся в этом случае над поверхностью жидкости, называется насыщенным.

Давление насыщенного пара –– наибольшее давление, которое может иметь пар при данной температуре. При увеличении температуры давление и плотность насыщенного пара увеличиваются (см. рисунок).

Зависимость плотности насыщенного водяного пара от температуры

 

Водяной пар становится насыщенным при достаточном охлаждении (процесс АВ) или в процессе дополнительного испарения воды (процесс АС). При достижении состояния насыщения начинается конденсация водяного пара в воздухе и на телах, с которыми он соприкасается. Роль центров конденсации могут играть ионы, мельчайшие капельки воды, пылинки, частички сажи и другие мелкие загрязнения. Если убрать центры конденсации, то можно получить пересыщенный пар.

На свойствах пересыщенного пара основано действие камеры Вильсона –– прибора для регистрации заряженных частиц. След (трек) частицы, влетевшей в камеру с пересыщенным паром, виден на фотографии как линия, вдоль которой конденсируются капельки жидкости.

Длина трека частицы зависит от заряда, массы, начальной энергии частицы. Длина трека увеличивается с возрастанием начальной энергии частицы. Однако при одинаковой начальной энергии тяжёлые частицы обладают меньшими скоростями, чем лёгкие. Медленно движущиеся частицы взаимодействуют с атомами среды более эффективно и будут иметь меньшую длину пробега.

Плотность водяного пара в воздухе составляет 17,3 гм3. Температура воздуха составляет 22 °С. Образование тумана можно будет наблюдать, если при неизменной плотности водяного пара

 

1) температура повысится до 23 °С

2) температура повысится до 26 °С

3) температура понизится до 21 °С

4) температура понизится до 18 °С

 

Конец формы

 

Начало формы

Переходу водяного пара, первоначально находящегося в состоянии А (см. рисунок выше), в состояние насыщения

 

1) соответствует только процесс АВ

2) соответствует только процесс АС

3) соответствует только процесс АD

4) соответствуют все три указанных процесса: АВ, АС и АD

 

Конец формы

 

Начало формы

Ядра дейтерия 21Н и трития 31Н имеющие одинаковую начальную энергию, влетают в камеру Вильсона. У какого из ядер длина пробега будет больше? Ответ поясните.

Вулканы

Известно, что по мере спуска в недра Земли температура постепенно повышается. Это обстоятельство и сам факт извержения вулканами жидкой лавы невольно наталкивали на мысль, что на определенных глубинах вещество земного шара находится в расплавленном состоянии. Однако на самом деле все не так просто. Одновременно с повышением температуры растет давление в земных глубинах. А ведь чем больше давление, тем выше температура плавления (см. рисунок).

Кривая плавления (p — давление, Т — температура)

Согласно современным представлениям, большая часть земных недр сохраняет твердое состояние. Однако вещество астеносферы (оболочка Земли от 100 км до 300 км в глубину) находится в почти расплавленном состоянии. Так называют твердое состояние, которое легко переходит в жидкое (расплавленное) при небольшом повышении температуры (процесс 1) или понижении давления (процесс 2).

Источником первичных расплавов магмы является астеносфера. Если в каком-то районе снижается давление (например, при смещении участков литосферы), то твердое вещество астеносферы тотчас превращается в жидкий расплав, т.е. в магму.

Но какие физические причины приводят в действие механизм извержения вулкана?

В магме наряду с парами воды содержатся различные газы (углекислый газ, хлористый и фтористый водород, оксиды серы, метан и другие). Концентрация растворенных газов соответствует внешнему давлению. В физике известен закон Генри: концентрация газа, растворенного в жидкости, пропорциональна его давлению над жидкостью. Теперь представим, что давление на глубине уменьшилось. Газы, растворенные в магме, переходят в газообразное состояние. Магма увеличивается в объеме, вспенивается и начинает подниматься вверх. По мере подъема магмы давление падает еще больше, поэтому процесс выделения газов усиливается, что, в свою очередь, приводит к ускорению подъема.

Какая сила заставляет расплавленную вспенившуюся магму подниматься вверх?

 

1) сила тяжести

2) сила упругости

3) сила Архимеда

4) сила трения

 

Конец формы

Начало формы

Как (быстро или медленно) должен всплывать аквалангист из глубины на поверхность? Ответ поясните.

Конец формы

 

Начало формы

В каких агрегатных состояниях находится вещество астеносферы в областях I и II на диаграмме (см. рисунок)?

 

1) I – в жидком, II – в твердом

2) I – в твердом, II – в жидком

3) I – в жидком, II – в жидком

4) I – в твердом, II – в твердом

Тройная точка1

Можно создать условия, при которых пар, жидкость и твёрдое состояние могут попарно существовать в равновесии. Могут ли находиться в равновесии все три состояния? Такая точка на диаграмме давление – температура существует, её называют тройной.

Если поместить в закрытый сосуд, в котором создан вакуум, при 0 °С воду с плавающим льдом, то в свободное пространство начнут поступать водяные (и «ледяные») пары.

 

При давлении 4,6 мм рт. ст. испарение прекратится, и наступит состояние насыщения. Теперь три фазы ––лёд, вода и пар – будут в состоянии равновесия. Эта и есть тройная точка.

Соотношения между различными состояниями наглядно показывает диаграмма для воды, изображённая на рисунке.

Кривые на рисунке – это кривые равновесия между льдом и паром (кривая (в)), льдом и водой (кривая (а)), водой и паром (кривая (б)). По вертикали, как обычно, откладывается давление, по горизонтали – температура.

Три кривые пересекаются в тройной точке и делят диаграмму на три области: лёд, вода и водяной пар.

Диаграмма состояния позволяет дать ответ на вопрос, какое агрегатное состояние вещества достигается в равновесии при определённом давлении и определённой температуре.

Если в условия, соответствующие области «лёд» на графике, поместить воду или пар, то они станут льдом. Если для жидкости или твёрдого тела создать условия, соответствующие области «пар», то получится пар, а условия области «вода» приведут к тому, что пар будет конденсироваться, а лёд – плавиться.

Диаграмма существования фаз позволяет сразу же ответить на вопрос, что произойдет с веществом при нагревании или сжатии.

На рисунке изображены две такие линии, одна из них (линия (1)) – это нагревание при нормальном давлении. Линия лежит выше тройной точки. Поэтому она пересечёт сначала кривую плавления, а затем, за пределами чертежа, и кривую испарения. Лёд при нормальном давлении расплавится при температуре 0 °С, а образовавшаяся вода закипит при 100 °С.

Иначе будет обстоять дело для льда, нагреваемого при очень небольшом давлении, скажем, чуть ниже 4,6 мм рт. ст.

Процесс нагревания изобразится линией, идущей ниже тройной точки. Кривые плавления и кипения не пересекаются этой линией. При таком незначительном давлении нагревание приведёт к непосредственному переходу льда в пар, твёрдое вещество будет прямо превращаться в пар.

Какая(-ие) линия(-и) на графике характеризует(-ют) процесс плавления?

1) только а 2) только б

3) только в 4) а и б

Конец формы

 

Начало формы

Тройной точкой воды называют такие значения температуры и давления, при которых вода находится одновременно

1) только в жидком и газообразном состояниях

2) только в твёрдом и газообразном состояниях

3) только в жидком и твёрдом состояниях

4) в твёрдом, жидком и газообразном состояниях

 

Конец формы

Начало формы

Что произойдет со льдом при температуре и давлении, заданных точкой Б на диаграмме состояния воды?

1) останется льдом

2) превратится в пар

3) превратится в жидкость

4) превратится частично в пар, частично в жидкость

Тройная точка2

Можно создать условия, при которых пар, жидкость и твёрдое состояние могут попарно существовать в равновесии. Могут ли находиться в равновесии все три состояния? Такая точка на диаграмме давление – температура существует, её называют тройной.

Если поместить в закрытый сосуд, в котором создан вакуум, при 0 °С воду с плавающим льдом, то в свободное пространство начнут поступать водяные (и «ледяные») пары.

 

При давлении 4,6 мм рт. ст. наступит состояние динамического равновесия, когда количество испарившихся молекул равно количеству сконденсировавших. Теперь три фазы ––лёд, вода и пар – будут в состоянии равновесия. Эта точка и есть тройная.

Соотношения между различными состояниями наглядно показывает диаграмма для воды, изображённая на рисунке.

Кривые на рисунке – это кривые равновесия между льдом и паром (кривая (в)), льдом и водой (кривая (а)), водой и паром (кривая (б)). По вертикали, как обычно, откладывается давление, по горизонтали – температура.

Три кривые пересекаются в тройной точке и делят диаграмму на три области: лёд, вода и водяной пар.

Диаграмма состояния позволяет дать ответ на вопрос, какое агрегатное состояние вещества достигается в равновесии при определённом давлении и определённой температуре.

Если в условия, соответствующие области «лёд» на графике, поместить воду или пар, то они станут льдом. Если для жидкости или твёрдого тела создать условия, соответствующие области «пар», то получится пар, а условия области «вода» приведут к тому, что пар будет конденсироваться, а лёд – плавиться.

Диаграмма существования фаз позволяет сразу же ответить на вопрос, что произойдет с веществом при нагревании или сжатии.

На рисунке изображены две такие линии, одна из них (линия (1)) – это нагревание при нормальном давлении. Линия лежит выше тройной точки. Поэтому она пересечёт сначала кривую плавления, а затем, за пределами чертежа, и кривую испарения. Лёд при нормальном давлении расплавится при температуре 0 °С, а образовавшаяся вода закипит при 100 °С.

Иначе будет обстоять дело для льда, нагреваемого при очень небольшом давлении, скажем, чуть ниже 4,6 мм рт. ст.

Процесс нагревания изобразится линией, идущей ниже тройной точки. Кривые плавления и кипения не пересекаются этой линией. При таком незначительном давлении нагревание приведёт к непосредственному переходу льда в пар, твёрдое вещество будет прямо превращаться в пар.

 

Что произойдет со льдом при температуре и давлении, заданных точкой Б на диаграмме состояния воды?

1) останется льдом

2) превратится в пар

3) превратится в жидкость

4) превратится частично в пар, частично в жидкость

Конец формы

 

Начало формы

Тройной точкой воды называют такие значения температуры и давления, при которых вода находится одновременно

1) только в жидком и газообразном состояния

2) только в твёрдом и газообразном состояниях

3) только в жидком и твёрдом состояниях

4) в твёрдом, жидком и газообразном состояниях

Конец формы

Какая(-ие) линия(-и) на диаграмме характеризует(-ют) процесс плавления? Ответ поясните.

Туман1

При определенных условиях водяные пары, находящиеся в воздухе, частично конденсируются, в результате чего и возникают водяные капельки тумана. Капельки воды имеют диаметр от 0,5 мкм до 100 мкм.

Возьмём сосуд, наполовину заполним водой и закроем крышкой. Наиболее быстрые молекулы воды, преодолев притяжение со стороны других молекул, выскакивают из воды и образуют пар над поверхностью воды. Этот процесс называется испарением воды. С другой стороны, молекулы водяного пара, сталкиваясь друг с другом и с другими молекулами воздуха, случайным образом могут оказаться у поверхности воды и перейти обратно в жидкость. Это конденсация пара. В конце концов, при данной температуре процессы испарения и конденсации взаимно компенсируются, то есть устанавливается состояние термодинамического равновесия. Водяной пар, находящийся в этом случае над поверхностью жидкости, называется насыщенным.

Если температуру повысить, то скорость испарения увеличивается и равновесие устанавливается при большей плотности водяного пара. Таким образом, плотность насыщенного пара возрастает с увеличением температуры (см. рисунок).

Рис. Зависимость плотности насыщенного водяного пара от температуры

 

Для возникновения тумана необходимо, чтобы пар стал не просто насыщенным, а пересыщенным. Водяной пар становится насыщенным (и пересыщенным) при достаточном охлаждении (процесс АВ) или в процессе дополнительного испарения воды (процесс АС). Соответственно, выпадающий туман называют туманом охлаждения и туманом испарения.

Второе условие, необходимое для образования тумана — это наличие ядер (центров) конденсации. Роль ядер могут играть ионы, мельчайшие капельки воды, пылинки, частички сажи и другие мелкие загрязнения. Чем больше загрязнённость воздуха, тем большей плотностью отличаются туманы.

 

Какие туманы более плотные: в городе или в горных районах? Ответ поясните.

 

Конец формы

 

Начало формы

При каком процессе, указанном на графике, можно наблюдать туман испарения?

 

1) только АB

2) только АС

3) АB и АС

4) ни АB, ни АС

 

Конец формы

 

Начало формы

Из графика на рисунке видно, что при температуре 20 °С плотность насыщенного водяного пара равна 17,3 г/м3. Это означает, что при 20 °С

1) масса насыщенных паров воды в 1м3 воздуха составляет 17,3 г

2) в 17,3 м3воздуха находится 1 г насыщенного водяного пара

3) относительная влажность воздуха равна 17,3%

4) плотность воздуха равна 17,3 г/м3

 

Туман2

При определенных условиях водяные пары, находящиеся в воздухе, частично конденсируются, в результате чего и возникают водяные капельки тумана. Капельки воды имеют диаметр от 0,5 мкм до 100 мкм.

Возьмем сосуд, наполовину заполним водой и закроем крышкой. Наиболее быстрые молекулы воды, преодолев притяжение со стороны других молекул, выскакивают из воды и образуют пар над поверхностью воды. Этот процесс называется испарением воды. С другой стороны, молекулы водяного пара, сталкиваясь друг с другом и с другими молекулами воздуха, случайным образом могут оказаться у поверхности воды и перейти обратно в жидкость. Это конденсация пара. В конце концов, при данной температуре процессы испарения и конденсации взаимно компенсируются, то есть устанавливается состояние термодинамического равновесия. Водяной пар, находящийся в этом случае над поверхностью жидкости, называется насыщенным.

Если температуру повысить, то скорость испарения увеличивается и равновесие устанавливается при большей плотности водяного пара. Таким образом, плотность насыщенного пара возрастает с увеличением температуры (см. рисунок).

Зависимость плотности насыщенного водяного пара от температуры

Для возникновения тумана необходимо, чтобы пар стал не просто насыщенным, а пересыщенным. Водяной пар становится насыщенным (и пересыщенным) при достаточном охлаждении (процесс АВ) или в процессе дополнительного испарения воды (процесс АС). Соответственно, выпадающий туман называют туманом охлаждения и туманом испарения.

Второе условие, необходимое для образования тумана — это наличие ядер (центров) конденсации. Роль ядер могут играть ионы, мельчайшие капельки воды, пылинки, частички сажи и другие мелкие загрязнения. Чем больше загрязненность воздуха, тем большей плотностью отличаются туманы.

Из графика на рисунке видно, что при температуре 20°С плотность насыщенного водяного пара равна 17,3 г/м3. Это означает, что при 20°С

 

1) в 1м3 воздуха находится 17,3 г водяного пара

2) в 17,3 м3воздуха находится 1 г водяного пара

3) относительная влажность воздуха равна 17,3%

4) плотность воздуха равна 17,3 г/м3

 

Конец формы

 

Начало формы

Для каких процессов, указанных на рисунке, можно наблюдать туман испарения?

 

1) только АB

2) только АС

3) АB и АС

4) ни АB, ни АС

 

 


 

Туман под микроскопом

Туман состоит в основном из капелек воды, имеющих диаметр от 0,5 до 100 мкм. Если в тумане преобладают очень мелкие капельки (диаметр меньше 1 мкм), то такой туман называется дымкой. Если же капли тумана относительно велики (диаметр порядка 100 мкм), то это так называемая морось.

В зависимости от размера капелек воды туман может иметь различный оттенок. Цвет тумана определяется световыми волнами, которые, рассеиваясь на капельках воды, попадают в глаз наблюдателя. Капельки диаметром много больше микрометра практически одинаково рассеивают свет во всём интервале длин волн, воспринимаемых глазом. Этим объясняется молочно-белый и белесоватый цвет мороси. Мелкие же капельки дымки рассеивают преимущественно более короткие световые волны, поэтому туманная дымка окрашена в синеватые и голубоватые тона.

В известном смысле возникновение тумана есть явление выпадения росы. Существенно, однако, что конденсация водяного пара в данном случае происходит не на поверхности земли, листьев или травинок, а в объёме воздуха. Центрами конденсации могут служить случайно образующиеся скопления молекул, ионы, а также пылинки, частички сажи и другие мелкие загрязнения в воздухе.

Для возникновения тумана необходимо, чтобы водяной пар в воздухе стал не просто насыщенным, а пересыщенным. Водяной пар становится насыщенным, если при данной температуре процессы испарения воды и конденсации водяного пара взаимно компенсируются, то есть в системе
вода – пар устанавливается состояние термодинамического равновесия. На рисунке представлен график зависимости плотности насыщенного водяного пара от температуры.

 

Водяной пар, состояние которого соответствует точке А, становится насыщенным при охлаждении (процесс АВ) или в процессе дополнительного испарения воды (процесс АС). Соответственно, выпадающий туман называют туманом охлаждения или туманом испарения.

 

При каком из процессов, указанных на графике, пар из состояния А переходит в состояние насыщения?

 

1) только АB

2) только АС

3) только АD

4) AB, AC и AD

 

Конец формы

 

Начало формы

Какой оттенок (голубоватый или красноватый) будет иметь источник белого света, например уличный фонарь, если его рассматривать сквозь туманную дымку? Ответ поясните.

Конец формы

 

Начало формы

Какое(-ие) утверждение(-я) справедливо(-ы)?

А. Городские туманы, по сравнению с туманами в горных районах, отличаются более высокой плотностью.

Б. Плотность насыщенного пара не зависит от температуры.

 

1) только А

2) только Б

3) и А, и Б

4) ни А, ни Б


 

Гейзеры

Гейзеры располагаются вблизи действующих или недавно уснувших вулканов. Для извержения гейзеров необходима теплота, поступающая от вулканов. Чтобы понять физику гейзеров, напомним, что температура кипения воды зависит от давления (см. рисунок).

 

 

Зависимость температуры кипения воды от давления

 

Представим себе 20-метровую гейзерную трубку, наполненную горячей водой. По мере увеличения глубины температура воды растёт. Одновременно возрастает и давление: оно складывается из атмосферного давления и давления столба воды в трубке. При этом везде по длине трубки температура воды оказывается несколько ниже температуры кипения, соответствующей давлению на той же глубине. Теперь предположим, что по одному из боковых протоков в трубку поступила порция пара. Пар вошёл в трубку и поднял воду до некоторого нового уровня, а часть воды вылилась из трубки в бассейн. При этом температура поднятой воды может оказаться выше температуры кипения при новом давлении, и вода немедленно закипает.

При кипении образуется пар, который ещё выше поднимает воду, заставляя её выливаться в бассейн. Давление на нижние слои воды уменьшается, так что закипает вся оставшаяся в трубке вода. В этот момент образуется большое количество пара; расширяясь, он с огромной скоростью устремляется вверх, выбрасывая остатки воды из трубки, – происходит извержение гейзера.

Но вот весь пар вышел, трубка постепенно вновь заполняется охладившейся водой. Время от времени внизу слышатся взрывы: это в трубку из боковых протоков попадают порции пара. Однако очередной выброс воды начнётся только тогда, когда вода в трубке нагреется до температуры, близкой к температуре кипения.

Может ли вода кипеть при комнатной температуре? Ответ поясните.

 

Конец формы

 

Начало формы

Какое(-ие) утверждение(-я) справедливо(-ы)?

А. Жидкость можно заставить закипеть, увеличивая внешнее давление при неизменной температуре.

Б. Жидкость можно заставить закипеть, увеличивая её температуру при неизменном давлении.

 

1) только А

2) только Б

3) и А, и Б

4) ни А, ни Б

 

Конец формы

 

Начало формы

В гейзерную трубку из бокового



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: