Устойчивость объектов экономики в чрезвычайных ситуациях




 

3.1. Принципы и критерии устойчивости ОЭ в ЧС

 

Человеческий опыт свидетельствует о том, что ОЭ не могут рассматриваться как абсолютно безопасные или как объекты, которым в процессе функционирования не угрожает опасность. Некоторые ОЭ являются особо опасными, создающими угрозу не только для себя, но и для других ОЭ, а иногда и для региона или даже государства в целом.

В условиях рыночной экономики нарушение нормального функционирования предприятий чревато для них банкротством, а для экономики в целом – кризисом. Особенно велико значение устойчивого функционирования экономики в военное время, когда его нарушение является одной из главных целей противников, а также в условиях ЧС в мирное время.

В этой связи очевидна необходимость обеспечения безопасности ОЭ и сопротивляемости их действию поражающих факторов.

Под устойчивостью ОЭ в ЧС в общем случае понимают их способность в заданных пределах противостоять действию поражающих факторов, то есть выполнять заданные функции.

При этом под выполнением заданных функций понимают способность объекта производить продукцию в запланированном объеме и номенклатуре, а под приспособленностью к восстановлению – его способность восстанавливать производство в кратчайшие сроки.

Основные критерии устойчивости работы ОЭ в условиях ЧС:

- способность выполнять заданные функции в этих условиях;

- возможность восстановления функций при получении повреждений.

В качестве критерия устойчивости может быть также использована удельная величина предотвращенного ущерба.

Основные принципы устойчивости работы ОЭ в ЧС:

- предотвращение возникновения и развития аварий на ОЭ при внешних воздействиях;

- продуманность и всесторонняя обоснованность конструкций, технических решений и технологий, применяемых на ОЭ, с точки зрения возможности его эксплуатации в условиях ЧС;

- высокие качественные показатели оборудования ОЭ (повышенная надежность, прочность, огнестойкость, радиационная стойкостью и т.п.), позволяющие его эксплуатировать при повышенных нагрузках;

- применение мер защиты производственного персонала и технологического оборудования от действия поражающих факторов при ЧС;

- подготовка производственного персонала к работе в условиях ЧС.

Эти принципы в значительной мере реализуются при обеспечении противоаварийной устойчивости ОЭ.

Основные задачи противоаварийной устойчивости ПОО: недопущение аварий, а также сохранение возможности выполнять свои функции, если аварии происходят.

Сложные технические системы, к которым относятся ПОО, всегда имеют определенную степень риска возникновения аварий, опасных для них и окружающей среды. «Цена» аварий возрастает с ростом сложности системы, сосредоточением на ОЭ больших энергетических мощностей и опасных веществ. Поэтому принятие мер, гарантирующих с высокой степенью надежности предотвращение аварий и снижение тяжести их последствий, жизненно необходимо.

Противоаварийная устойчивость ПОО в основном обеспечивается реализацией следующих мероприятий:

- выбор наименее опасных технологий;

- высокое качество и всесторонняя обоснованность проектов;

- высокое качество изготовления и монтажа;

- обслуживание и ремонт технологических установок;

- применение надежных средств предотвращения перехода технологических установок и оборудования в критический режим работы, влекущий за собой аварию;

- квалифицированная эксплуатация ПОО в соответствии нормативно-технической документацией, инструкциями;

- принятие мер по защите технологических установок, производственных систем и оборудования от внешних воздействий и ситуаций, связанных с «человеческим фактором» (низким уровнем квалификации, безответственностью, ошибками производственного персонала, терроризмом);

- поддержание безотказности оборудования и систем, препятствующих возникновению и развитию аварий;

- создание многоэшелонной защиты от опасных последствий аварий.

Основное требование противоаварийной защиты – исключение катастрофических повреждений ПОО реализуется созданием последовательных противоаварийных барьеров:

- предотвращение аварий, т.е. эксплуатация ОЭ в пределах, исключающих возможность их возникновения; достигается отработанностью проектов, высоким качеством изготовления технологических установок и оборудования ПОО, их надежностью, высокой квалификацией обслуживающего персонала;

- предотвращение развития проектных аварий на ранней стадии их возникновения, что обеспечивается противоаварийными системами;

- предотвращение и защита от маловероятных, труднопредсказуемых аварий; ограничение их последствий.

Такие аварии, как правило, являются следствием многократных отказов и множественных ошибок производственного персонала ПОО. Требуется придание опасному оборудованию ПОО свойства самозащищенности, использованием принципов резервирования, разнообразия, физического разделения и независимости.

 

3.2. Направления государственной политики в области повышения устойчивости потенциально опасных объектов

 

Основные направления государственной политики в области повышения устойчивости опасных объектов и населения:

· совершенствование государственного регулирования безопасности и нормативной правовой базы в области промышленной безопасности, защиты населения и территорий отЧС;

· усиление защиты объектов от последствий техногенных, природных факторов и террористических проявлений, повышение защищенности населения и окружающей среды от воздействия ЧС различного характера и от неблагоприятных факторов, связанных с эксплуатацией опасных объектов;

· развитие фундаментальной и прикладной науки в области обеспечения безопасности функционирования критически важных объектов;

· развитие и совершенствование систем обеспечения информационной безопасности на критически важных и опасных объектах, реализация единой государственной политики в этой области, включая формы, методы и средства выявления, оценки и прогнозировали угроз безопасности информационно-телекоммуникационной инфраструктуре таких объектов, а также системы противодействия этим угрозам;

· совершенствование систем и средств физической противоаварийной защиты опасных объектов, повышение их антитеррористической устойчивости;

· повышение эффективности мероприятий по предупреждению ЧС природного и техногенного характера и по минимизации их последствий;

· создание системы резервов материальных ресурсов для ликвидации указанных ЧС, а также возможныхтеррористических проявлений;

· совершенствование процессов подготовки населения и управляющих структур к действиям по ликвидации ЧС и обеспечению жизнедеятельности ПОО;

· повышение эффективности международного сотрудничества в области защищенности опасных объектов и населения.

Основные мероприятия в целях повышения защищенности ПОО:

· проведение инвентаризации критически важных и опасных объектов и на этой основе разработка единой методики категорирования опасных объектов Российской Федерации;

· установление уровня приемлемого риска техногенной опасности для населения;

· развитие страхового фонда документации на ПОО;

· повышение эффективности государственного регулирования антитеррористической деятельности, предусматривающей обеспечение защищенности опасных объектов, мест массового скопления людей;

· проведение комплекса мероприятий по развитию систем, средств и методов технической диагностики объектов и оборудования, отработавших расчетный ресурс эксплуатации, но используемых на опасных объектах;

· совершенствование систем контроля и управления, в том числе автоматической противоаварийной защиты технологических процессов, обеспечение эффективного функционирования дежурно-диспетчерской службы объектов;

· разработка и внедрение безопасных современных технологий, материалов, технических устройств, комплектующих и других видов продукции;

· разработка и внедрение систем безопасности для всех видов транспортных средств, используемых при перевозке опасных грузов, обеспечение непрерывного мониторинга их состояния и местоположения;

· проведение комплекса инженерных мероприятий по снижению риска воздействия опасных факторов при проектировании, строительстве, эксплуатации и выводе из эксплуатации опасных объектов;

· введение обязательного лицензирования деятельности (кроме подразделений и частей внутренних войск МВД и Минобороны РФ) на опасных объектах.

 

3.3. Пути и способы повышения устойчивости работы ОЭ в ЧС

 

3.3.1. Общие положения

Пути повышения устойчивости работы ОЭ (рис.7):

- предотвращающие потерю устойчивости;

- обеспечивающие устойчивость функционирования;

- восстанавливающие устойчивость функционирования.

Способы повышения устойчивости сводятся к отказу от использования, уничтожению или перепрофилированию потенциально опасного оборудования и технологий; прерыванию цепи событий, ведущих к ЧС; обеспечению безопасности; повышению надежности используемого оборудования и технологий; к быстрому восстановлению устойчивости ОЭ после ее потери в результате ЧС. Наиболее эффективными являются первые два пути. Однако повышение устойчивости ОЭ с их использованием не всегда возможно.

Способы повышения устойчивости многообразны, но решение задачи может быть достигнуто только при их комплексном применении. Поэтому работу по повышению устойчивости проводят, используя все доступные в данных конкретных условиях пути и способы. Выбор путей и способов основывается на системном анализе значимости влияющих на работу ОЭ поражающих факторов при ЧС и чувствительности элементов ОЭ к их воздействию.

Мероприятия по повышению устойчивости разрабатываются на основе исследований каждого из факторов, оказывающих влияние на работу ОЭ. Большая часть мероприятий осуществляется на объекте заблаговременно, меньшая – в преддверии ЧС, наступление которых известно или заранее спрогнозировано.

При разработке мероприятий руководствуются требованиями ИТМ ГО и результатами реальной оценки устойчивости, полученными в ходе ее исследования.

При этом учитывается, что достижение абсолютной устойчивости и исключение ущерба практически невозможно. Поэтому планируются и осуществляются лишь те мероприятия, которые позволяют уменьшить ущерб, обеспечить защиту производственного персонала и выпуск запланированной продукции при условии экономической целесообразности мероприятий. Обычно мероприятия считаются целесообразными, если суммарные затраты на них не превышают 1–2% стоимости ОПФ. Осуществляемые мероприятия прежде всего направлены на повышение устойчивости тех видов производственных структур, без участия которых невозможен выпуск основной продукции ОЭ.

Важную роль играют мероприятия по рациональному размещению производств на территории ОЭ, которые обычно осуществляются на этапах проектирования и реконструкции предприятия и реже ‒ на этапе его эксплуатации:

- зонирование производств, т.е. размещение однотипных видов производств в отдельных зонах, отделяемых друг от друга широкими магистральными проездами, искусственными водоемами или зелеными насаждениями; использование рельефа местности;

- малоэтажная рассредоточенная планировка производств;

- максимально возможное с учетом производственного и экономического факторов уменьшение плотности застройки;

- перенос в загородную зону вспомогательных и дублирующих производств, складов сырья и готовой продукции;

- размещение оборудования, если это возможно, вне зданий или в зданиях с облегченным покрытием.

Объем мероприятий и их содержание определяются масштабами и характером возможных ЧС, величиной риска их возникновения, характеристиками, степенью важности ОЭ в системе экономики страны и степенью его опасности для окружающей среды и населения при ЧС на самом ОЭ; собственными возможностями и возможностями государственных и иных структур, которые могут оказать помощь объекту в обеспечении необходимой степени его устойчивости.

При выборе путей, способов и мероприятий для повышения устойчивости ОЭ ориентируются на ситуации, определяемые значительной величиной риска их реализации и наибольшими потерями и ущербом.

 

 


Рис.7. Пути и способы обеспечения устойчивости работы ОЭ в ЧС
Функцио- нальное
Врем- енное  
Струк- турное
Физи- ческое
Структур- но-функ- циональное
Конструк- тивное
Физии- ческое

 
 
 



При выборе мероприятий учитывается возможность оптимизации производимых затрат, т.е. главным образом минимально необходимый объем мероприятий и их полезность в условиях повседневной производственной деятельности ОЭ, связанной с улучшением условий труда производственного персонала, увеличением выпуска товарной продукции, улучшением экологической обстановки в районе объекта и т.п.

 

3.3.2. Обеспечение защиты производственного персонала

Надежная защита производственного персонала в ЧС является важнейшим условием повышения устойчивости ОЭ.

Мероприятия, обеспечивающие защиту персонала, основаны на своевременном обнаружении, оповещении и исключении или ослаблении действия поражающих факторов ‒ путем мониторинга окружающей среды и производственных процессов, использования эффективных систем оповещения и средств защиты, проведения эвакомероприятий. Решение задачи мониторинга достигается оснащением ОЭ приборами и системами, позволяющими обнаруживать опасные концентрации углеводородных топлив и химических веществ, ионизирующие излучения и т.п. ОЭ должны иметь объектовую систему оповещения об опасности, подключенную к городской или региональной системе оповещения, и достаточное для укрытия наибольшей работающей смены количество защитных сооружений. При их недостаточном количестве осуществляется дополнительное строительство убежищ и противорадиационных укрытий соответствующих классов, быстровозводимых убежищ и простейших укрытий. Строительство последних производится в военное время в угрожаемый период. Вся подготовительная работа осуществляется заблаговременно: приобретение проектной документации; выбор конкретных мест, на которых будет осуществляться строительство; их посадка и привязка; заготовка всех необходимых строительных материалов и оборудования, инструмента и технических средств; выделение и обучение производственного персонала.

Каждый рабочий и служащий ОЭ должен иметь СИЗ персонала при возможных авариях и катастрофах. Накопление СИЗ производится ОЭ самостоятельно с хранением их в местах, максимально приближенных к тем, для кого они предназначены. Каждый член производственного коллектива должен уметь пользоваться СИЗ и находиться в них в течение всего времени возможного действия поражающих факторов.

Для вывода персонала с территории и из сооружений ОЭ при возникновении опасных очагов поражения или угрозе применения оружия в военное время планируется проведение эвакомероприятий. Спланированные эвакомероприятия должны постоянно уточняться с учетом изменяющейся обстановки. Их эффективная реализация обеспечивается проведением учений и тренировок, а также хорошей подготовкой руководящего состава ОЭ.

Для уменьшения риска поражения людей при попадании ОЭ в зону радиоактивного заражения в случае аварий на РОО и применении ядерного

оружия в военное время, авариях на ХОО, угрозе бактериального заражения производится герметизация производственных зданий и помещений. При герметизации зданий предполагается заделка всех щелей и трещин в ограждающих конструкциях; уплотнение дверных, оконных и иных проемов, отсутствие которых не нарушает условий эксплуатации; оштукатуривание внутренних поверхностей стен при наличии пустот в швах кладки; герметизация вводов в наружные стены коммуникаций (водопровода, отопления, воздуховодов, канализации, электроснабжения и др.). На воздухозаборных и вытяжных устройствах приточно-вытяжных систем вентиляции устанавливаются герметические задвижки или крышки. Работы по герметизации выполняются по проекту, разрабатываемому проектной организацией в соответствии с заданием на проектирование, выданным ОЭ. Перечень и объем инженерно-технических мероприятий по герметизации определяется в ходе проведения исследования устойчивости ОЭ.

Для защиты от радиоактивных веществ открытых частей машин, агрегатов и пультов управления, с которыми соприкасаются люди во время работы, могут быть использованы полиэтиленовые чехлы, брезенты и другие покрытия.

Для обеззараживания воды, поступающей для хозяйственно-бытовых и производственных нужд из открытых источников, очистные сооружения (отстойники, фильтры, хлоратные установки) оборудуются устройствами для задержки радиоактивных, отравляющих, АХОВ и бактериальных средств.

С целью проведения возможной специальной обработки оборудования и санитарной обработки людей создаются запасы дезактивирующих, дегазирующих и дезинфицирующих веществ, а также необходимых материалов и технических средств. Душевые приспосабливаются для проведения при необходимости полной санитарной обработки производственного персонала. Спецобработка зараженных помещений и оборудования производится личным составом формирований обеззараживания ОЭ.

 

3.3.3. Повышение устойчивости инженерно-технического комплекса

Повышение устойчивости зданий и сооружений может быть достигнуто за счет их рационального размещения на территории ОЭ, оптимальной конструкции и усиления прочности. Повышение прочностных характеристик, ввиду больших затрат, целесообразно только для зданий особо важных производственных участков и цехов: предел прочности увеличивают, как правило, до общепринятого на данном ОЭ.

По времени мероприятия по повышению устойчивости производственных зданий осуществляются на этапах проектирования, нового строительства, реконструкции и эксплуатации. Одним из основных факторов, вызывающих разрушение зданий, является ударная волна. Предусматривается либо ее пропуск через здание, либо повышение прочностных свойств основных конструктивных элементов здания.

При проектировании перекрытий вводят прочные, но легкие материалы и конструктивные решения, позволяющие уменьшить массу перекрытий, что приводит к уменьшению ущерба при их обрушении. Каркасные конструкции, стеновые заполнения, перекрытия, перегородки проектируют из несгораемых или трудно сгораемых материалов, что значительно снижает риск возникновения пожаров и их масштабы. Уменьшается парусность зданий − за счет снижения их высоты и увеличения отношения суммарной площади оконных проемов к общей площади стен. При величине отношения более 50% ударная волна, затекающая в здание, практически не усиливается за счет отражения. Уменьшение парусности повышает устойчивость зданий не только к действию ударной волны, но и к действию ветра при ураганах. Устойчивость зданий к действию ударных и сейсмических волн при землетрясениях повышается при использовании антисейсмических принципов строительства (простая конфигурация в плане, членение на отсеки антисейсмическими швами, сооружении антисейсмических железобетонных поясов в уровнях междуэтажных перекрытий и другие принципы). Поскольку повышенная сложность антисейсмических конструкций увеличивает стоимость здания, антисейсмические принципы используются обычно лишь для зданий и сооружений основных производств. Некоторые типы зданий и сооружений проектируются полузаглубленными, что не только увеличивает их устойчивость, но и позволяет использовать подземные этажи для размещения уникального оборудования и ЗС для укрытия производственного персонала.

Решение задачи повышения устойчивости эксплуатируемых зданий: уменьшение расчетных пролетов существующей сети опорных колонн путем установки дополнительных опор; подведение дополнительных опор вне сетки проектных колонн; усиление опорных колонн металлическим бандажом с заливкой пустот бетоном; введение дополнительных элементов жесткости каркаса и усиление его наиболее слабых узлов дополнительными связями; усиление несущих плит перекрытия нижних этажей; подведение дополнительного ряда опор; усиление опорных колонн ферм перекрытия путем разгрузки части несущей стены; освобождение верхних этажей здания от второстепенного технологического оборудования.

Устойчивость технологического оборудования: обеспечение сохранности особо ценного и уникального станочного парка, без которого невозможно продолжение производства; рациональное размещение оборудования и усиление его наиболее слабых элементов; создание запаса этих элементов, особо ответственных узлов и деталей, материалов и инструментов, необходимых для ремонта; закрепление оборудования на фундаментах, защиты от обломков разрушающихся конструкций зданий.

Для защиты наиболее важного технологического оборудования, от устойчивости работы которого зависит выпуск продукции, применяют металлические сетки, выполненные из арматурной стали, и приспособления, защищающие наиболее ответственные и уязвимые узлы станков.

На практике, как правило, используются все имеющиеся возможности по защите как отдельных видов оборудования, так и их групп, участков, линий с учетом специфики ОЭ.

Наибольшую сложность представляют поточные линии сборочных цехов, имеющие большое количество подвесных конструкций и приспособлений с низкой устойчивостью к действию поражающих факторов.

Здесь оптимальны податливые крепежные элементы, воспринимающие энергию удара.

Действенным способом является постоянная модернизация технологического оборудования с целью повышения надежности его работы.

Надежность технологических процессов обеспечивается за счет устойчивости системы управления и бесперебойного обеспечения всеми видами сырья, материалов и энергии; исключения или ограничения использования горючих, взрывоопасных и АХОВ; возможности переноса производства в другие цехи; разработки эффективных способов безаварийной остановки технологических установок или перевода их на пониженный режим работы, обходных технологических процессов.

Основой для разработки обходных технологических процессов служат: возможные разрушения станочного и технологического оборудования с выходом из строя отдельных станков и целых линий; планируемая эвакуация части оборудования, вызывающая нарушение технологического цикла на основном производстве; нарушение поставок сырья; возможность использования другого вида инструмента, топлива и другие причины. Измененные технологии (не обязательно упрощенные) должны отвечать требованиям выпуска планируемой продукции хорошего качества и в установленные сроки. При разработке обходных технологий должна учитываться возможность получения тем или иным цехом слабых или средних разрушений и продолжения работы с оставшимся оборудованием, инструментом, сырьем, материалами и производственным персоналом. Каждый разработанный технологический процесс обеспечивается необходимой технологической документацией. Предусматривается возможность выпуска продукции, ее узлов и агрегатов упрощенной конструкции.

Обходные технологические процессы и все необходимые для их реализации мероприятия разрабатываются заранее.

Промышленные объекты являются крупнейшими потребителями электроэнергии со сложной и разветвленной системой их электроснабжения. Специфической особенностью энергосистем является большое разнообразие приемников электроэнергии − по мощности и режиму работы. Для уменьшения потерь электроэнергии и увеличения надежности электроснабжения система электроснабжения ОЭ строится таким образом, чтобы все ее элементы постоянно были под нагрузкой.

Схемы распределения электроэнергии внутри ОЭ предприятия строятся ступенчато: от главной понизительной подстанции на 110–220 кВ до распределительного пункта на 6–10 кВ; от распределительного пункта до цеховых подстанций. Внутризаводская распределительная сеть может быть радиальной (с расположением нагрузок в радиальном направлении от центра питания) и магистральной (с подачей электроэнергии от главной понизительной подстанции или теплоэлектроцентрали ОЭ непосредственно к цеховым трансформаторным подстанциям).

Система электроснабжения является определяющей системой ОЭ, точнее от ее работы в значительной мере зависит его устойчивость.

Устойчивость системы электроснабжения достигается совместным выполнением общегородских (региональных) и объектовых инженерно-технических мероприятий. Главные из них следующие:

ОЭ обеспечивается электроэнергией не менее чем от двух линий распределительной сети города (региона) таким образом, чтобы при выходе из строя одной линии электроэнергия поступала бы от другой. Внутри отдельные участки распределительной сети связаны через автоматическую систему, позволяющую выключать их при аварии; кабели электроснабжения прокладываются под землей в траншеях или в общих коллекторах; трассы выбираются наиболее короткими и прямыми под непроезжей частью территории ОЭ или под тротуарами. Наиболее уязвимые элементы системы (наземные сооружения понизительные и трансформаторные станции, подстанции, распределительные пункты) усиливаются до принятого предела устойчивости к механическим воздействиям, обеспечивается их противопожарная устойчивость; защищаются внутрицеховые осветительные и силовые щиты; дублируются воздушные линии внутризаводской распределительной сети, если их невозможно проложить под землей; с учетом технологии производства разрабатывается схема специальных режимов работы системы электроснабжения, позволяющая поэтапно подключать источники питания к цехам и участкам; готовится система аварийного электроснабжения главных производств, с использованием передвижных электростанций и отбором мощности с имеющихся, но не используемых по прямому назначению электросиловых установок, например кранов большой грузоподъемности, энергоустановок морских и речных судов.

Для отопления и различных технологических целей ОЭ широко используются горячая вода и пар. Их источниками являются городские или районные ТЭЦ и котельные, а на очень крупных ОЭ – объектовые ТЭЦ. Подаются горячая вода и пар под давлением 700–2500 кПа с помощью тепловых сетей, которые включают в себя систему подающих и обратных теплопроводов горячего теплоснабжения и сеть паропроводов.

Трубы тепловых сетей обычно прокладываются на надземных эстакадах, а в некоторых случаях – на кронштейнах, закрепленных на стенах зданий и сооружений. Такая прокладка более экономична и проста в эксплуатации, но обладает низкой устойчивостью к действию поражающих факторов.

Устойчивость тепловых сетей достигается за счет обеспечения: равнопрочности ее наземных сооружений и остальных элементов инженерно-технического комплекса ОЭ; защиты распределительных устройств, контрольно-измерительной аппаратуры и приборов автоматики; кольцевания сетей с установкой автоматических отключающих устройств; прокладки трубопроводов в грунте или в подземных коллекторах. При невозможности переноса тепловых сетей с эстакад в подземные коллекторы принимаются меры по повышению устойчивости эстакад и усилению крепления к ним трубопроводов. При прокладке трубопроводов на низких эстакадах их устойчивость повышается обсыпкой грунтом.

Устойчивость системы водоснабжения ОЭ определяется возможностью подачи необходимого количества воды в условиях ЧС.

ОЭ, расположенные в городе, получают воду из городского водопровода. В сеть внутризаводского водопровода она может подаваться от городских магистралей или через местные повысительные насосные станции.

В целях повышения устойчивости вода подается от городских линий не менее чем по двум вводам. Сеть закольцовывается для обеспечения возможности маневра путем обхода поврежденных участков. Для нужд производства и пожаротушения предусматриваются резервные источники водоснабжения − естественные и искусственные водоемы, оборудованные для забора воды; артезианские скважины.

При создании резервных источников водоснабжения обеспечивается их защита от заражения радиоактивными, АХОВ и бактериальными средствами. Наиболее просто эта задача решается при использовании подземных резервуаров и артезианских скважин, оголовки которых герметизируются. Наземные сооружения системы водоснабжения (насосные станции, пункты управления, устройства энергопитания) защищаются от действия механических поражающих факторов. С этой же целью заглубляются в грунт все коммуникации. Переключающие устройства и пожарные гидранты устанавливаются на незаваливаемой территории. Устраиваются перемычки, переключающие устройства и обводные линии (байпасы), значительно повышающие живучесть системы объектового водоснабжения. Осуществляются мероприятия по бесперебойному электроснабжению насосных станций. При отказе основных источников питания предусматривается использование резервных источников.

При новом строительстве и реконструкции целесообразно устройство системы оборотного водоснабжения, более устойчивой к действию поражающих факторов.

Для повышения устойчивости системы канализации устраиваются раздельные сети − ливневой и промышленно-хозяйственной (фекальной). Эти сети имеют не менее двух выпусков в городские и канализационные коллекторы. Предусматриваются аварийные сбросы и перепуски на случай аварий или разрушения городских насосных станций. Обеспечивается защита наземных станций перекачки и их надежное электроснабжение. На объектовых канализационных коллекторах устанавливаются аварийные задвижки в колодцах, располагаемых с интервалом 50 м на незаваливаемой территории.

Снабжение ОЭ газом осуществляется от городской системы. Мероприятия, обеспечивающие устойчивость системы газоснабжения. Питание ОЭ газом должно осуществляться от закольцованной распределительной сети высокого (300–600 кПа) и среднего (5–300 кПа) давления через не менее чем два ввода от разных магистралей. Вводы соединяются на территории ОЭ, образуя закольцованную внутриобъектовую сеть. Все газовые вводы на территорию объекта и в здания цехов оборудуются автоматическими отключающими устройствами. Сеть газопроводов на территории ОЭ должна быть подземной с прокладкой на глубине не менее 2–2,5 м, а наземные сооружения (газорегулирующие пункты, газораспределительные установки) надежно защищены. На сети должны быть предусмотрены байпасы с отключающими устройствами, а сама сеть приспособлена для работы при сниженном давлении в целях уменьшения вероятности возникновения пожаров. Резервные емкости для хранения газа должны располагаться под землей и выдерживать высокое давление газа. Кроме них в качестве автономных источников могут использоваться подземные хранилища или автоцистерны со сжиженным газом.

Существенную роль в повышении устойчивости систем энергоснабжения играет подготовка к использованию при необходимости резервных источников топлива. Объемы резервных запасов топлива должны быть рассчитаны на период времени, необходимый для восстановления пострадавших при ЧС систем энергоснабжения, а технические средства, сооружения, транспортные средства, производственный персонал подготовлены для работы с ними. Подготовка включает организацию хранения, доставки, выделение и обучение производственного персонала, приспособление энергосистем для работы на резервных видах топлива и т.п.

В целом устойчивость работы систем энергоснабжения достигается осуществлением мероприятий регионального и объектового характера. Прорабатываются вопросы возможности использования дублирующих и создания резервных источников энергии. Дублируются, закольцовываются и защищаются сети; защищаются особо ответственные элементы и устройства энергетических систем; повышается их прочность; разрабатываются и используются источники энергии, способные работать на различных видах энергоносителей; создается запас материалов и деталей, необходимых для ремонта; запас энергоносителей. Принимаются меры по предупреждению возникновения вторичных поражающих факторов. Внедряются на энергосетях системы автоматического управления, отключающие поврежденные участки без вмешательства производственного персонала.

Повышение пожароустойчивости ОЭ обеспечивается блокированием факторов, способствующих возникновению и развитию пожаров, а также осуществлением мероприятий, связанных с их своевременным обнаружением, локализацией и тушением.

Прежде всего это строгое выполнение правил и норм пожарной безопасности при проектировании, строительстве, реконструкции и эксплуатации. Для уменьшения вероятности возникновения пожаров необходимо проводить работу по очистке территории, чердачных и подвальных помещений, лестничных клеток и других помещений от всех горючих и особенно легковоспламеняющихся веществ и материалов. Все малоценные деревянные строения, заборы, навесы должны быть снесены. Количество пожаровзрывоопасных веществ в цехах не должно превышать требующегося для осуществления операций, предусмотренных технологическим процессом. Если по технологии возможно, горючие вещества и материалы заменяются негорючими. Емкости с горючими веществами усиливаются, заглубляются или обваловываются, устраиваются стоки и ловушки. На опасных в пожарном отношении технологических аппаратах и линиях устанавливаются устройства подавления взрывов и возгораний, водяных завес, автоматически срабатывающие задвижки, гидрозатворы. Осуществляется подготовка к безаварийной остановке плавильных, нагревательных, закалочных печей и им подобного технологического оборудования.

Ограничение распространения возникших пожаров достигается возведением дополнительных противопожарных стен (брандмауэров), перегородок, дверей, разрывов, полос.

Для эффективной борьбы с пожарами производственные здания и сооружения оснащаются противопожарным инвентарем, ручными средствами пожаротушения, автоматическими системами пожарной сигнализации и тушения, противопожарной техникой. Исправность средств борьбы с пожаром должна периодически, в соответствии с установленными сроками, контролироваться и поддерживаться. Создаются запасы огнетушащих веществ, необходимые для тушения специфических видов пожаров. На территории ОЭ, при отсутствии естественных, строятся искусственные противопожарные водоемы с необходимым запасом воды, дорогами и подъездами к ним, площадками для постановки пожарных машин, мотопомп и другой противопожарной техники. Могут устраиваться артезианские скважины, оборудованные для забора воды пожарными машинами, устанавливаться резервуары с запасом воды для тушения пожаров. Система водоснабжения оборудуется гидрантами. Для беспрепятственного доступа пожарных и техники к местам возникших пожаров проходы в цехах должны быть освобождены от лишнего имущества и материалов, а магистральные проезды и подходы к цехам расчищены.

Защита от возгорания горючих материалов при действии светового излучения ядерного взрыва д



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-07 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: