Роль коры в условнорефлекторной деятельности




Кора головного мозга является местом высшего анализа и синтеза всех афферентных возбуждений, областью формирования всех сложных приспособительных актов живого организма.

Кора больших полушарий оказывает постоянные нисходящие (тормозные и облегчающие) влияния на подкорковые структуры. Существуют различные формы циклического взаимодействия между корой и подкоркой, выражающиеся в циркуляции возбуждений между ними. Наиболее выраженная замкнутая циклическая связь существует между таламусом и соматосенсорной областью коры мозга, составляющими в функциональном отношении единое целое. Корково-подкорковая циркуляция возбуждений определяется не только таламокортикальными связями, но и более обширной системой подкорковых образований. На этом базируется вся условно-рефлекторная деятельность организма. Специфика циклических взаимодействий коры и подкорковых образований в процессе формирования поведенческой реакции организма определяется его биологическими состояниями (голод, боль, страх, ориентировочно - исследовательская реакция).

Согласно И.П. Павлову временная связь образуется между корковым центром безусловного рефлекса и корковым центром анализатора, на рецепторы которого действует условный раздражитель, т.е связь замыкается в коре большого мозга. В основе замыкания временной связи лежит процесс доминантного взаимодействия между возбужденными центрами. Импульсы, вызываемые индифферентным (условным) сигналом с любого участка кожи и других органв чувств (глаз, ухо), поступают в кору большого мозга и обеспечивают образование в ней очага возбуждения. Если после индифферентного сигнала подается пищевое подкрепление (подкормка), то возникает более мощный очаг возбуждения в коре больших полушарий. Неоднократное сочетание в опытах условного сигнала и безусловного раздражителя облегчает прохождение импульсов о коркового центра индифферентного сигнала к корковому представительству безусловного рефлекса-синаптическое облегчение (проторение пути)-доминанта. Условный рефлекс сначала становится доминантой, а потом условным рефлексов (В. С. Русинов)

В коре больших полушарий происходит образование временной связи, И.П. Павлов назвал этот процесс замыканием условно- рефлекторной дуги, так как теперь подача только условного сигнала приводит к возбуждению коркового центра безусловного рефлекса.

Э. А. Асратян показал, что образование условных рефлексов с прямыми и обратными связями является общей закономерностью высшей нервной деятельности. В процессе выработки условного рефлекса образуется двусторонняя связь между двумя центрами –корковым концом сенсорной системы, на рецепторы которого действует условный раздражитель, и центром безусловного рефлекса, на базе которого вырабатывается условный рефлекс. (сочетание мигательного рефлекса и безусловного пищевого)

Необходимым условием образования функциональной связи между корковыми центрами ассоциируемых раздражителей является синхронизация биопотенциалов.

У высших животных и человека высшим центром интеграции поведения является кора больших полушарий.

У животных после удаления коры головного мозга (декортицированных) резко нарушается условно-рефлекторная деятельность, причем, чем выше стоит животное в эволюционном отношении, тем ярче выражены эти нарушения. Поведенческие реакции животного, подвергшегося декортикации, сильно расстраиваются; большую часть времени такие животные спят, просыпаясь только при сильных раздражениях и для совершения простых рефлекторных актов (мочеиспускание, дефекация). У таких животных можно выработать условнорефлекторные реакции, однако слишком примитивные и недостаточные для осуществления адекватной приспособительной деятельности организма.
Вопрос о том, на каком уровне головного мозга (в коре или подкорке) происходит замыкание условного рефлекса, в настоящее время не рассматривается как принципиальный.

Кора больших полушарий, являясь высшей инстанцией синтеза афферентных возбуждений, организует внутренние нервные связи для совершения ответного рефлекторного акта. Ретикулярная формация и другие подкорковые структуры, оказывая множественные восходящие влияния на кору головного мозга, создают лишь необходимые условия для организации более совершенных корковых временных связей, а в результате этого — и для формирования адекватной поведенческой реакции организма. Кора больших полушарий в свою очередь оказывает постоянные нисходящие (тормозные и облегчающие) влияния на подкорковые структуры. В этом тесном функциональном взаимодействии между корой и нижележащими образованиями головного мозга заключена основа интегративной деятельности мозга как единого целого. С этой точки зрения, разделение функций мозга на чисто корковые и чисто подкорковые в какой-то степени искусственно и необходимо лишь для понимания роли различных образований мозга в формировании целостной приспособительной реакции организма.

23. Роль гиппокампа и гипоталамуса в условнорефлекторной деятельности

Центральное место среди образований лимбической системы отводится гиппокампу. Анатомически установлен гиппокампальный круг (гиппокамп → свод → мамиллярные тела → передние ядра таламуса → поясная извилина → cingulum → гиппокамп), который вместе с, гипоталамусом играет ведущую роль в формировании эмоций. Непрерывная циркуляция возбуждения по гиппокампальному кругу определяет главным образом тоническую активацию коры головного мозга, а также интенсивность эмоций.
Часто у больных с тяжелыми формами психоза и другими психическими заболеваниями после смерти находили патологические изменения в структурах гиппокампа. Предполагают, что циркуляция возбуждения по гиппокампальному кольцу служит одним из механизмов памяти.

Медиальная группа ядер таламуса (неспецифические ядра) служит местом переключения восходящих активирующих влияний, которые направляются от стволовой ретикулярной формации в кору мозга.
Специфические и неспецифические ядра таламуса находятся в тесной функциональной взаимосвязи, что обеспечивает первичный анализ и синтез всех афферентных возбуждений, поступающих в головной мозг. В таламусе имеется четкая локализация представительства различных афферентных нервов, идущих от различных рецепторов. Эти афферентные нервы заканчиваются в определенных специфических ядрах таламуса, а от каждого ядра волокна направляются в кору головного мозга к специфическим проекционным зонам представительства той или иной афферентной функции (зрительной, слуховой, тактильной и т. д.). Особенно тесно таламус связан с соматосенсорной областью коры больших полушарий. Эта взаимосвязь осуществляется благодаря наличию замкнутых циклических связей, направленных как от коры к таламусу, так и от таламуса к коре. Поэтому соматосенсорную область коры и таламус в функциональном отношении можно рассматривать как единое целое.
У животных, находящихся на более низких ступенях филогенетического развития, таламус играет роль высшего центра интеграции поведения, обеспечивая все необходимые рефлекторные акты животного, направленные на сохранение его жизни. Функции же таламуса заключаются в регуляции и осуществлении ряда сложных рефлекторных актов, являющихся как бы базой, на основе которой создается адекватное целенаправленное поведение животного и человека. Эти ограниченные функции таламуса четко проявляются у так называемого таламического животного, т. е. у животного с удаленными корой больших полушарий и подкорковыми узлами. Такое животное может самостоятельно передвигаться, сохраняет основные познотонические рефлексы, обеспечивающие нормальное положение тела и головы в пространстве, сохраняет регуляцию температуры тела и всех вегетативных функций. Но оно не может адекватно реагировать на различные раздражители внешней среды вследствие резкого нарушения условно-рефлекторной деятельности.

Взаимосвязь левого и правого полушарий при выработке условных рефлексов обеспечивается наличием комиссуральной системы (мозолистого тела, передней, задней, гиппокомпальной и хабенулярной комиссур, межбугрового сращения), которая анатомически соединяет два полушария головного мозга. Получены результаты свидетельствующие о переносе возбуждения из одного полушария в другое (выработанный рефлекс на тактильное раздражение кожи с одной стороны тела легко воспроизводится при раздражении симметричных участков кожи другой стороны тела, т. е. происходит «перенос» временной связи в другое полушарие) Но перезка всех комиссур больших полушарий полностью не исключает возможности межполушарного взаимодействия. Элементарные формы взаимодействия двух полушарий могут осуществляться через четверохолмие и ретикулярную формацию ствола мозга.

24. Роль миндалины и ретикулярной формации в условнорефлекторной деятельности.

Некоторые образования лимбической системы (миндалевидный комплекс) оказывают генерализованное восходящее активирующее влияние на кору головного мозга.
Учитывая регуляторные влияния лимбической системы на вегетативные функции (кровяное давление, дыхание, тонус сосудов, моторику желудочно-кишечного тракта), можно понять те вегетативные реакции, которые сопровождают любой условнорефлекторный акт организма.

С функциональной точки зрения к подкорковым образованиям относят комплекс структур головного мозга, который играет ведущую роль в формировании основных врожденных рефлексов человека и животных: пищевых, половых и оборонительных. Этот комплекс получил название лимбической системы и включает в себя поясную извилину, гиппокамп, грушевидную извилину, обонятельный бугорок, миндалевидный комплекс и область перегородки.

Подкорковые функции.

Полноценная аналитико-синтетическая деятельность коры больших полушарий возможна лишь при условии прихода к ней от подкорковых структур мощных генерализованных потоков возбуждений, богатых энергией и способных обеспечить системный характер корковых очагов возбуждений. С этой точки зрения и следует рассматривать функции подкорковых образований, являющихся, по выражению И. П. Павлова, «источником энергии для коры».
Это генерализованное восходящее активирующее влияние ретикулярной формации — непременное условие поддержания бодрствующего состояния мозга. Лишенная источника возбуждения, которым служит ретикулярная формация, кора головного мозга приходит в недеятельное состояние, сопровождаемое медленной высокоамплитудной электрической активностью, характерной для состояния сна. Такую картину можно наблюдать при децеребрации, т. е. у животного с перерезанным стволом мозга (см. ниже). В этих условиях ни какие-либо афферентные раздражения, ни прямое раздражение ретикулярной формации не вызывает диффузной, генерализованной реакции десинхронизации. Таким образом, доказано наличие в головном мозге по крайней мере двух основных каналов поступления афферентных воздействий на кору больших полушарий: по классическому лемнисковому пути и по коллатералям через ретикулярную формацию ствола мозга.
при формировании целостных приспособительных реакций организма восходящие активирующие влияния ретикулярной формации на кору головного мозга носят специфический характер, соответствующий данной биологической деятельности животного — пищевой, половой, оборонительной (П. К. Анохин). Это означает, что в формировании различных биологической реакций организма участвуют различные области ретикулярной формации, осуществляющие активацию коры больших полушарий (А. И. Шумилина, В. Г. Агафонов, В. Гавличек).
Наряду с восходящими влияниями на кору больших полушарий ретикулярная формация может оказывать и нисходящие влияния на рефлекторную деятельность спинного мозга. В ретикулярной формации различают области, которые оказывают тормозящие и облегчающие влияния на моторную активность спинного мозга. По своему характеру эти влияния диффузны и оказывают воздействие на все группы мышц. Они передаются по нисходящим спинальным путям, которые различны для тормозящих и облегчающих влияний.
Ретикулярная формация имеет тесные функциональные и анатомические связи с гипоталамусом, таламусом, продолговатым мозгом и другими отделами головного мозга, поэтому все наиболее общие функции организма (терморегуляция, пищевая и болевая реакции, регуляция постоянства внутренней среды организма) находятся в той или иной функциональной зависимости от нее. Прежде чем достигнуть коры, эти потоки возбуждения имеют многочисленные синаптические переключения в таламусе, который служит как бы промежуточным, связующим звеном между низшими образованиями ствола мозга и корой больших полушарий. Импульсы от периферических концов всех внешних и внутренних анализаторов переключаются в латеральной группе ядер таламуса (специфические ядра) и отсюда направляются по двум путям: к подкорковым ганглиям и к специфическим проекционным зонам коры мозга.

Таким образом, таламус в функциональной взаимосвязи с ретикулярной формацией, оказывая локальные и генерализованное воздействия на кору больших полушарий, организует и регулирует соматическую функцию головного мозга как целого.
25.Теория функциональных систем.

Теория функциональной системы, была разработана П. К. Анохиным (1935) в результате проводимых им исследований компенсаторных приспособлений нарушенных функций организма. Как показали эти исследования, всякая компенсация нарушенных функций может иметь место только при мобилизации значительного числа физиологических компонентов, зачастую расположенных в различных отделах центральной нервной системы и рабочей периферии, тем не менее всегда функционально объединенных на основе получения конечного приспособительного эффекта. Такое функциональное объединение различно локализованных структур и процессов на основе получения конечного (приспособительного) эффекта и было названо «функциональной системой» [П. К. Анохин, 1968]. При этом принцип функциональной системы используется как единица саморегуляторных приспособлений в многообразной деятельности целого организма. «Понятие функциональной системы представляет собой прежде всего динамическое понятие, в котором акцент ставится на законах формирования какого-либо функционального объединения, обязательно заканчивающегося полезным приспособительным эффектом и включающего в себя аппараты оценки этого эффекта» [П. К. Анохин, 1958]. Ядром функциональной системы является приспособительный эффект, определяющий состав, перестройку эфферентных возбуждений и неизбежное обратное афферентирование о результате промежуточного или конечного приспособительного эффекта. Понятие функциональной системы охватывает все стороны приспособительной деятельности целого организма, а не только взаимодействия или какую-либо комбинацию нервных центров («констелляция нервных центров» – А. А. Ухтомский, 1966) [П. К. Анохин, 1958].

Теория функциональных систем, предложенная П.К.Анохиным, постулирует принципиально новый подход к физиологическим явлениям. Она изменяет традиционное "органное" мышление и открывает картину целостных интегративных функций организма.

Возникнув на основе теории условных рефлексов И.П.Павлова, теория функциональных систем явилась ее творческим развитием. Вместе с тем в процессе развития самой теории функциональных систем она вышла за рамки классической рефлекторной теории и оформилась в самостоятельный принцип организации физиологических функций. Функциональные системы имеют отличную от рефлекторной дуги циклическую динамическую организацию, вся деятельность составляющих компонентов которой направлена на обеспечение различных приспособительных результатов, полезных для организма и для его взаимодействия с окружающей средой и себе подобными. Любая функциональная система, согласно представлениям П.К.Анохина, имеет принципиально однотипную организацию и включает следующие общие, притом универсальные для разных функциональных систем периферические и центральные узловые механизмы (рис. 1):

1. Полезный приспособительный результат как ведущее звено функциональной системы;

2. Рецепторы результата;

3. Обратную афферентацию, поступающую от рецепторов результата в центральные образования функциональной системы;

4. Центральную архитектонику, представляющую избирательное объединение функциональной системой нервных элементов различных уровней;

5. Исполнительные соматические, вегетативные и эндокринные компоненты, включающие организованное целенаправленное поведение.

С общетеоретической точки зрения функциональные системы представляют саморегулирующиеся организации, динамически и избирательно объединяющие ЦНС и периферические органы и ткани на основе нервной и гуморальной регуляции для достижения полезных для системы и организма в целом приспособительных результатов. Полезными для организма адаптивными результатами являются в первую очередь обеспечивающие различные стороны метаболических процессов гомеостатические показатели, а также находящиеся за пределами организма результаты поведенческой деятельности, удовлетворяющие различные биологические (метаболические) потребности организма, потребности зоосоциальпых сообществ, социальные и духовные потребности человека.

Функциональные системы строятся прежде всего текущими потребностями живых существ. Они постоянно формируются метаболическими процессами. Кроме того, функциональные системы организма могут складываться под влиянием специальных факторов окружающей организм среды. У человека это в первую очередь факторы социальной среды. Механизмы памяти также могут быть причиной формирования функциональных систем, особенно поведенческого и психического уровней.

Совокупная деятельность множества функциональных систем в их взаимодействии определяет сложные процессы гомеостазиса организма и его взаимодействия со средой обитания.

Функциональные системы представляют, таким образом, единицы интегративной деятельности организма.

Теория функциональных систем была разработана П.К.Анохиным (1935) в результате проводимых им исследований компенсаторных приспособлений нарушенных функций организма. Как показали эти исследования, всякая компенсация нарушенных функций может иметь место только при мобилизации значительного числа физиологических компонентов, зачастую расположенных в различных отделах центральной нервной системы и рабочей периферии, тем не менее, всегда функционально объединенных на основе получения конечного приспособительного эффекта. Такое функциональное объединение различно локализованных структур и процессов на основе получения конечного (приспособительного) эффекта и было названо «функциональной системой» [П.К.Анохин, 1968]. При этом принцип функциональной системы используется как единица саморегуляторных приспособлений в многообразной деятельности целого организма. «Понятие функциональной системы представляет собой, прежде всего, динамическое понятие, в котором акцент ставится на законах формирования какого-либо функционального объединения, обязательно заканчивающегося полезным приспособительным эффектом и включающего в себя аппараты оценки этого эффекта» [П.К.Анохин, 1958].

Ядром функциональной системы является приспособительный эффект, определяющий состав, перестройку эфферентных возбуждений и неизбежное обратное афферентирование о результате промежуточного или конечного приспособительного эффекта. Понятие функциональной системы охватывает все стороны приспособительной деятельности целого организма, а не только взаимодействия или какую-либо комбинацию нервных центров («констелляция нервных центров» - по А.А.Ухтомскому, 1966) [П.К.Анохин, 1958].
Согласно теории функциональных систем, центральным системообразующим фактором каждой функциональной системы является результат ее деятельности, определяющий в целом для организма условия течения метаболических процессов [П.К.Анохин, 1980]. Именно достаточность или недостаточность результата определяет поведение системы: в случае его достаточности организм переходит на формирование другой функциональной системы с другим полезным результатом, представляющим собой следующий этап в универсальном континууме результатов. В случае недостаточности полученного результата происходит стимулирование активирующих механизмов, возникает активный подбор новых компонентов, создается перемена степеней свободы действующих синаптических организаций и, наконец, после нескольких «проб и ошибок» находится совершенно достаточный приспособительный результат. Таким образом, системой можно назвать только комплекс таких избирательно вовлеченных компонентов, у которых взаимодействие и взаимоотношения принимают характер взаимосодействия компонентов для получения конкретного полезного результата [П.К.Анохин, 1978].
Были сформулированы основные признаки функциональной системы как интегративного образования:
1. Функциональная система является центрально-периферическим образованием, становясь, таким образом, конкретным аппаратом саморегуляции. Она поддерживает свое единство на основе циклической циркуляции от периферии к центрам и от центров к периферии, хотя и не является «кольцом» в полном смысле этого слова.
2. Существование любой функциональной системы непременно связано с получением какого-либо четко очерченного результата. Именно этот результат определяет то или иное распределение возбуждений и активностей по функциональной системе в целом.
3. Другим абсолютным признаком функциональной системы является наличие рецепторных аппаратов, оценивающих результаты ее действия. Эти рецепторные аппараты в одних случаях могут быть врожденными, в других это могут быть обширные афферентные образования центральной нервной системы, воспринимающие афферентную сигнализацию с периферии о результатах действия. Характерной чертой такого афферентного аппарата является то, что он складывается до получения самих результатов действия.
4. Каждый результат действия такой функциональной системы формирует поток обратных афферентаций, представляющих все важнейшие признаки (параметры) полученных результатов. В том случае, когда при подборе наиболее эффективного результата эта обратная афферентация закрепляет последнее наиболее эффективное действие, она становится «санкционирующей афферентацией» [П.К.Анохин, 1935].
5. В поведенческом смысле функциональная система имеет ряд дополнительных широко разветвленных аппаратов.
6. Жизненно важные функциональные системы, на основе которых строится приспособительная деятельность новорожденных животных к характерным для них экологическим факторам, обладают всеми указанными выше чертами и архитектурно оказываются созревшими точно к моменту рождения. Из этого следует, что объединение частей каждой жизненно важной функциональной системы (принцип консолидации) должно стать функционально полноценным на каком-то сроке развития плода еще до момента рождения [П.К.Анохин, 1968].
Функциональная система всегда гетерогенна. Конкретным механизмом взаимодействия компонентов любой функциональной системы является освобождение их от избыточных степеней свободы, не нужных для получения данного конкретного результата, и, наоборот, сохранение всех тех степеней свободы, которые способствуют получению результата. В свою очередь, результат через характерные для него параметры и благодаря системе обратной афферентации имеет возможность реорганизовать систему, создавая такую форму взаимодействия между ее компонентами, которая является наиболее благоприятной для получения



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: