Относительность расстояний




Пусть твердый стержень покоится в системе отсчета K', движущейся со скоростью υ относительно системы отсчета K (рис. 7.3.1). Стержень ориентирован параллельно оси x'. Его длина, измеренная с помощью эталонной линейки в системе K', равна l0. Ее называют собственной длиной. Какой будет длина этого стержня, измеренная наблюдателем в системе K? Для ответа на этот вопрос необходимо дать определения процедуры измерения длины движущегося стержня.

Под длиной l стержня в системе K, относительно которой стержень движется, понимают расстояние между координатами концов стержня, зафиксированными одновременно по часам этой системы. Если известна скорость системы K' относительно K, то измерение длины движущегося стержня можно свести к измерению времени: длина l движущегося со скоростью υ стержня равна произведению υτ0, где τ0 – интервал времени по часам в системе K между прохождением начала стержня и его конца мимо какой-нибудь неподвижной точки (например, точки A) в системе K (рис. 7.3.1). Поскольку в системе K оба события (прохождение начала и конца стержня мимо фиксированной точки A) происходят в одной точке, то промежуток времени τ0 в системе K является собственным временем. Итак, длина l движущегося стержня равна l = υτ0.

Рисунок 7.3.1. Измерение длины движущегося стержня.

Найдем теперь связь между l и l0. С точки зрения наблюдателя в системе K', точка A, принадлежащая системе K, движется вдоль неподвижного стержня налево со скоростью υ, поэтому можно записать

l0 = υτ,

где τ есть промежуток времени между моментами прохождения точки A мимо концов стержня, измеренный по синхронизованным часам в K'. Используя связь между промежутками времени τ и , найдем

 

 

Таким образом, длина стержня зависит от системы отсчета, в которой она измеряется, то есть является относительной величиной. Длина стержня оказывается наибольшей в той системе отсчета, в которой стержень покоится. Движущиеся относительно наблюдателя тела сокращаются в направлении своего движения. Этот релятивистский эффект носит название лоренцева сокращения длины.

Расстояние не является абсолютной величиной, оно зависит от скорости движения тела относительно данной системы отсчета. Сокращение длины не связанно с какими-либо процессами, происходящими в самих телах. Лоренцево сокращение характеризует изменение размера движущегося тела в направлении его движения. Если стержень на рис. 7.3.1 расположить перпендикулярно оси x, вдоль которой движется система K', то длина стержня оказывается одинаковой для наблюдателей в обеих системах K и K'. Это утверждение находится в соответствии с постулатом о равноправии всех инерциальных систем. Для доказательства можно рассмотреть следующий мысленный эксперимент. Расположим в системах K и K' вдоль осей y и y' два жестких стержня. Стержни имеют одинаковые собственные длины l, измеренные неподвижными по отношению к каждому из стержней наблюдателями в K и K', и один из концов каждого стержня совпадает с началом координат O или O'. В некоторый момент стержни оказываются рядом и представляется возможность сравнить их непосредственно: конец каждого стержня может сделать метку на другом стержне. Если бы эти метки не совпали с концами стержней, то один из них оказался бы длиннее другого с точки зрения обеих систем отсчета. Это противоречило бы принципу относительности.

Неизменность длины движущегося стержня, ориентированного перпендикулярно направлению движения, была использована в § 7.2 при анализе релятивистского замедления времени.

Следует обратить внимание, что при малых скоростях движения (υ << c) формулы СТО переходят в классические соотношения: l ≈ l0 и τ ≈ τ0. Таким образом, классические представления, лежащие в основе механики Ньютона и сформировавшиеся на основе многовекового опыта наблюдения над медленными движениями, в специальной теории относительности соответствуют предельному переходу при β = υ / c → 0. В этом проявляется принцип соответствия (см. § 7.1).

 

Преобразования Лоренца

Классические преобразования Галилея несовместимы с постулатами СТО и, следовательно, должны быть заменены другими преобразованиями. Эти новые преобразования должны установить связь между координатами (x, y, z) и моментом времени t события, наблюдаемого в системе отсчета K, и координатами (x', y', z') и моментом времени t' этого же события, наблюдаемого в системе отсчета K'.

Кинематические формулы преобразования координат и времени в СТО называются преобразованиями Лоренца. Они были предложены в 1904 году еще до появления СТО как преобразования, относительно которых инвариантны уравнения электродинамики. Для случая, когда система K' движется относительно K со скоростью υ вдоль оси x, преобразования Лоренца имеют вид:

K' → K K → K' β = υ / c.

 

 

Из преобразований Лоренца вытекает целый ряд следствий. В частности, из них следует релятивистский эффект замедления времени и лоренцево сокращение длины. Пусть, например, в некоторой точке x' системы K' происходит процесс длительностью τ0 = t'2 – t'1 (собственное время), где t'1 и t'2 – показания часов в K' в начале и конце процесса. Длительность τ этого процесса в системе K будет равна

 

Аналогичным образом, можно показать, что из преобразований Лоренца вытекает релятивистское сокращение длины. Одним из важнейших следствий из преобразований Лоренца является вывод об относительности одновременности. Пусть, например, в двух разных точках системы отсчета K' (x'1 ≠ x'2) одновременно с точки зрения наблюдателя в K' (t'1 = t'2 = t') происходят два события. Согласно преобразованиям Лоренца, наблюдатель в системе K будет иметь

 

Следовательно, в системе K эти события, оставаясь пространственно разобщенными, оказываются неодновременными. Более того, знак разности t2 – t1 определяется знаком выражения υ(x'2 – x'1), поэтому в одних системах отсчета первое событие может предшествовать второму, в то время как в других системах отсчета, наоборот, второе событие предшествует первому. Этот вывод СТО не относится к событиям, связанным причинно-следственными связями, когда одно из событий является физическим следствием другого. Можно показать, что в СТО не нарушается принцип причинности, и порядок следования причинно-следственных событий одинаков во всех инерциальных системах отсчета.

Относительность одновременности пространственно-разобщенных событий можно проиллюстрировать на следующем примере.

Пусть в системе отсчета K' вдоль оси x' неподвижно расположен длинный жесткий стержень. В центре стержня находится импульсная лампа B, а на его концах установлены двое синхронизованных часов (рис. 7.4.1(a)), система K' движется вдоль оси x системы K со скоростью υ. В некоторый момент времени лампа посылает короткие световые импульсы в направлении концов стержня. В силу равноправия обоих направлений свет в системе K' дойдет до концов стержня одновременно, и часы, закрепленные на концах стержня, покажут одно и то же время t'. Относительно системы K концы стержня движутся со скоростью υ так, что один конец движется навстречу световому импульсу, а другой конец свету приходится догонять. Так как скорости распространения световых импульсов в обоих направлениях одинаковы и равны c, то, с точки зрения наблюдателя в системе K, свет раньше дойдет до левого конца стержня, чем до правого (рис. 7.4.1(b)).

Рисунок 7.4.1. Относительность одновременности. Световой импульс достигает концов твердого стержня одновременно в системе отсчета K' (a) и не одновременно в системе отсчета K (b).

Преобразования Лоренца выражают относительный характер промежутков времени и расстояний. Однако, в СТО наряду с утверждением относительного характера пространства и времени важную роль играет установление инвариантных физических величин, которые не изменяются при переходе от одной системе отсчета к другой. Одной из таких величин является скорость света c в вакууме, которая в СТО приобретает абсолютный характер. Другой важной инвариантной величиной, отражающей абсолютный характер пространственно-временных связей, является интервал между событиями.

Пространственно-временной интервал определяется в СТО следующим соотношением:

 

где t12 – промежуток времени между событиями в некоторой системе отсчета, а l12 – расстояние между точками, в которых происходят рассматриваемые события, в той же системе отсчета. В частном случае, когда одно из событий происходит в начале координат (x1 = y1 = z1 = 0) системы отсчета в момент времени t1 = 0, а второе – в точке с координатами x, y, z в момент времени t, пространственно-временной интервал между этими событиями записывается в виде

 

 

С помощью преобразований Лоренца можно доказать, что пространственно-временной интервал между двумя событиями не изменяется при переходе из одной инерциальной системы в другую. Инвариантность интервала означает, что, несмотря на относительность расстояний и промежутков времени, протекание физических процессов носит объективный характер и не зависит от системы отсчета.

Если одно из событий представляет собой вспышку света в начале координат системы отсчета при t = 0, а второе – приход светового фронта в точку с координатами x, y, z в момент времени t (рис. 7.1.3), то

x2 + y2 + z2 = c2t2,

и, следовательно, интервал для этой пары событий s = 0. В другой системе отсчета координаты и время второго события будут другими, но и в этой системе пространственно-временной интервал s' окажется равным нулю, так как

 

Для любых двух событий, связанных между собой световым сигналом, интервал равен нулю.

Из преобразований Лоренца для координат и времени можно получить релятивистский закон сложения скоростей. Пусть, например, в системе отсчета K' вдоль оси x' движется частица со скоростью Составляющие скорости частицы u'x и u'z равны нулю. Скорость этой частицы в системе K будет равна

С помощью операции дифференцирования из формул преобразований Лоренца можно найти:

 

 

Эти соотношения выражают релятивистский закон сложения скоростей для случая, когда частица движется параллельно относительной скорости систем отсчета K и K'.

При υ << c релятивистские формулы переходят в формулы классической механики:

ux = u'x + υ, uy = 0, uz = 0.

 

Если в системе K' вдоль оси x' распространяется со скоростью u'x = c световой импульс, то для скорости ux импульса в системе K получим

 

Таким образом, в системе отсчета K световой импульс также распространяется вдоль оси x со скоростью c, что согласуется с постулатом об инвариантности скорости света.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-01-08 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: