Судовые воздушные компрессоры.




Необходимы для обеспечения потребителей СЭУ и в целом судна сжатым воздухом различного давления и расхода.

Судовые компрессоры можно классифицировать по

следующим признакам:

А. Конструктивные особенности и характеристики:

- поршневые, центробежные, винтовые, осевые;

- приводы от электродвигателя, дизельного двигате­ля, от главного двигателя. Соединение с приводом муфтовое или техстропами;

- по давлению: 0,8-1,2 МПа, до 3,5 МПа, до 6,5 - 7,5 МПа и выше;

- по оборотам приводного двигателя: от 585 до 1750 мин-1;

- по ступеням сжатия: 1-но ступенчатые, 2-х ступен­чатые и 3-х ступенчатые. В свою очередь 2-х ступен­чатые поршневые ЭКП бывают одностороннего и двухстороннего действия;

- по количеству цилиндров на ступень: один цилиндр с одним поршнем и одним воздухоохладителем; один цилиндр с поршнем 2-х и 3-х диаметров, а также с двумя и тремя воздухоохладителями; два цилиндра раздельно, один первой ступени и один второй ступени;

- по виду охлаждения цилиндров, крышек и воздухо­охладителей: водой забортной, пресной от общей си­стемы охлаждения СЭУ, воздухом от вентилятора, приводимого от вала компрессора;

- по производительности (м3/час) одного цилиндра (или одной пары цилиндров, если 1-ая и 2-ая ступень в двух цилиндрах) в зависимости от оборотов привод­ного двигателя, размеров цилиндра и конечного давления: до 0,8 МПа - 20-г480 (м3), до 3,0 МПа - 440 (м3), до 6,0 МПа - 130 (м3) свободного воздуха; производительность 3-х ступенчатого компрессора главного двигателя с компрессорным распылом - около 250 (м3/час).

Б. По назначению компрессоры подразделяются:

- Центробежные компрессоры с приводом от турбины выхлопных газов ГД для продувки и наддува ГД;

- Осевые компрессоры для управления антикреновыми системами на судах с рампой (аппарелью), судах Ро-Ро, многоцелевых судах и судах с тяже­ловесной стрелой грузоподъемностью 150, 280 и более тонн. При таком управлении антикреновой системой в любых условиях крен практически не заметен в отличие от систем с управлением вихре­выми реверсивными насосами большой мощнос­ти (до 14160 л/мин);

- ЭКП пускового воздуха на судах с ВФШ. Они, как правило, бывают поршневые 2-х ступенчатые до 3,5 МПа (от 3-х до 7-ми цилиндров), с цилиндровой подачей 75 м3/час и больше. Обычно устанавливают 2 воздухохранителя по 10000 литров каждый;

- ЭКП для работы системы автоматики. Бывают 2-х и 3-х цилиндровые компрессоры с выходным дав­лением 1,2 МПа и более;

- ЭКП аварийный, обычно 1-цилиндровый. Его элект­ропривод запитывается от АДГ. На некоторых судах АДГ запускается не только от аккумуляторов, но до­полнительно от взрывного заряда или от специаль­ного небольшого баллона пускового воздуха с давле­нием 7,0 МПа. Для зарядки такого баллона имеется специальный компрессор.

- 4-х ступенчатый V-образный компрессор высокого давления для заправки аквалангов (через керамичес­кий фильтр) давлением до 40,0 МПа

Основные детали компрессоров изготовляются из следующих материалов:

- цилиндры, крышки: чугун (втулки цилиндров зап­рессовываются на резиновых уплотнительных коль­цах или выполняются заодно с блоком цилиндра);

- поршни: чугун, алюминий;

-коленчатый вал, шатуны: модифици-рованный ковкий чугун, сталь;

- подшипники: игольчатые или стальные вкладыши, залитые белым металлом; головной подшипник из свинцовистой бронзы. Упорные шайбы включены в коренные подшипники;

- поршневые и маслосъемные кольца: высококаче­ственный чугун. Твердость по Бриннелю на 10 еди­ниц больше, чем у цилиндра.

На судах мирового флота применяются воздушные компрессоры различных фирм. Они бывают двух и трехступенчатые.

Необходимость применения много-ступенчатых компрес­соров вызвана тем, что степень сжатия воздуха в одной ступени не должнапревышать 8 (т. е. воздух в первой, например, ступени можно сжимать до давления 0,8 МПа). Это объясняется тем, что температура вспышки компрессорных смазочных масел составляет 250-280°С, а при сжатии воздуха до 0,8 МПа его температура достигает 170- 220°С. При дальнейшем повышении давления пары масла могут самовоспламениться, что приведет к взрыву и разру­шению компрессора. Поэтому в первой ступени двухступен­чатого компрессора воздух обычно сжимается до 0,5-0,8 МПа, но второй - до конечного давления 2,5-3,0 МПа. При этом воздух обязательно охлаждается в специальном воздухоох­ладителе после первой ступени компрессора примерно до пер­воначальной температуры (для предотвращения чрезмерно­го повышения температуры воздуха после сжатия во второй ступени и уменьшения затрат мощности на привод компрес­сора). После второй ступени компрессора, перед подачей в воздухохранители (баллоны), воздух также охлаждается (по Правилам Регистра температура воздуха, поступающего в баллоны, не должна превышать 40°С). Для очистки воздуха от масла и влаги устанавливаются влагомаслоотделители.

 

Типовые схемы двухступенчатых компрес­соров.

На рис. 1.1 показана схема двухступенчатого компрес­сора. Поршень для обеих ступеней выполнен общий: нижняя его часть 2 имеет больший диаметр и является поршнем первой ступени, а часть 6 - поршнем второй ступени. Рабочие полости ступеней - это соответственно кольцевая полость первой ступени и торцевая полость второй ступени.

При ходе поршня вниз воздух всасывается из атмосфе­ры через клапан 5 в первую ступень компрессора. При ходе вверх поршень сжимает воздух и через клапан 4 нагнетает его к всасывающему клапану 9 второй ступени через воздухоохладитель 19 и влагомаслоотделитель 18 с клапаном продувания 17. Однако в это же время происходит сжатие воздуха во второй ступени. Воздух из нее подается через нагнетательный клапан 8, воздухоохладитель 16, вла­гомаслоотделитель 15с клапаном продувания 14 и обратным клапаном 13 в баллоны пускового воздуха.

Для предотвращения чрезмерного повышения давле­ния воздуха после каждой ступени компрессора установлены предохранительные клапаны 10 и 11. Давление воздуха после каждой ступени контролируют по манометрам 12.

Таким образом, сжатие в компрессоре происходит одновременно в первой и второй ступенях при ходе поршня вверх, а всасывание происходит также одновременно в обеих ступенях при ходе поршня вниз. Такой компрессор является одностороннего действия.

На рис. 1.2 показана схема двухступенчатого компрес­сора двухстороннего действия. Его основное отличие от рассмотренного выше компрессора состоит в том, что поршень имеет больший диаметр в верхней части (первая ступень) и меньший диаметр в нижней части (вторая ступень). Принцип действия компрессора заключается в следующем.

При ходе поршня 8 вниз происходит всасывание возду­ха из атмосферы в первую ступень через фильтр 1 и всасывающий клапан 2. Затем при ходе поршня вверх происходит сжатие воздуха и его нагнетание через клапан 15 в охладитель 13 первой ступени и далее во вторую ступень через ее всасывающий клапан 11. При очередном ходе поршня вниз осуществляется вновь всасывание в первую ступень и одновременно сжатие во второй ступени. При этом воздух нагнетается через клапан 7 в охладитель 5 второй ступени и далее через запорный вентиль 3 в воздушные бал­лоны. Охлаждающая вода подается в охладители по указан­ным стрелкам противотоком для повышения эффективнос­ти процесса охлаждения сжатого воздуха.

Сравнивая двухступенчатые компрессоры, выполнен­ные по приведенным выше схемам, можно отметить следующие эксплутационные особенности. Компрессор одностороннего действия выше и тяжелее. Подшипники шатуна нагружены больше, т. к. на них действует суммарное усилие от обеих ступеней при сжатии воздуха.

На рис. 1.3 (а) показана схема компрессора односто­роннего действия (типа тандем).

Принцип действия компрессора.

При движении поршня сверху вниз из атмосферы через клапан 2 в цилиндр низкого давления всасывается, вследствие образующегося разрежения, воздух. При подъеме поршня воздух сжимается до давления 0,4 МПа и закрывает всасывающий клапан. Когда давление сжатия превысит давление в нагнетательном трубопроводе, открывается клапан 1, и воздух нагнетается по воздухопроводу 6 в холодильник 7 первой ступени. Некоторое количество сжатого воздуха, оставшееся в пространстве ц. н. д. между крышкой и поршнем (вредное пространство), при нисходящем движении поршня расширяется и тем самым отдаляет момент открытия всасывающего клапана. Чем выше давление воздуха в конце сжатия и чем больше объем вредного пространства, тем позднее открывается всасывающий клапаны, следовательно, тем меньше производительность компрессора. Поэтому вредное пространство в компрессоре должно быть возможно меньшим.

Сжатый в первой ступени воздух охлаждается в хо­лодильнике 7 до температуры, примерно равной той, какую он имел до начала сжатия.

После охлаждения в холодильнике 7 воздух при сле­дующем движении поршня вниз всасывается через клапан 8 в ц. с. д., где вторично сжимается, на этот раз до 1,5-1,6 МПа, и через клапан 3 по трубе 9 поступает в холодильник 10, где вновь охлаждается до температуры начала сжатия. В дальнейшем сжатый воздух по трубе 11 поступает в третью ступень давления, где сжимается до 6,0-7,0 МПа. Отжав от седла клапан 4, воздух по трубе 12 поступает в холодильник 13, откуда, охладившись, направляется по трубе 14 в расходные и запасные баллоны.

Величина конечного давления сжатого воздуха в ступенях компрессора (0,4-1,5-6,0 МПа) обусловливает­ся тем, что в каждом цилиндре трехступенчатого комп­рессора давление воздуха увеличивается, исходя из ус­ловий равномерного распределения давления по ступеням, примерно в четыре раза.

На рис 1.3 (б) приведена схема трехступенчатого компрессора с дифференциальным поршнем. Для удоб­ства все позиции сохранены прежними. Принцип дей­ствия этого компрессора в отличие от предыдущего зак­лючается в следующем.

При ходе поршня вниз происходит всасывание че­рез клапан 2 в ц. н. д., а при движении поршня вверх - нагнетание через клапан 1 по трубопроводу 6 в охлади­тель 7. В это же время происходит всасывание через кла­пан 8 в ц. с. д. При следующем ходе поршня вниз воздух сжимается в ц. с. д. и подается через клапан 3 по трубо­проводу 9 в охладитель 10. Далее он поступает по трубо­проводу 11 через всасывающий клапан в ц. в. д. Нако­нец, при последующем ходе поршня вверх воздух сжимается в ц. в. д. до конечного давления и через кла­пан 4 по трубопроводу 12 поступает в охладитель 13, от­туда по трубопроводу 14 подается в баллоны. Сопоставляя простой компрессор (тандем) с диффе­ренциальным, можно отметить следующее.

В компрессоре тандем с последовательным располо­жением ступеней давления сжатие и всасывание воздуха происходят одновременно во всех ступенях. В дифферен­циальном компрессоре сжатие одновременно протекает только в ц. н. д. и в ц. в. д., при обратном же ходе поршня компрессора воздух сжимается в ц. с. д. Следовательно, в дифференциальном компрессоре нагрузка на вал от сжа­тия воздуха распределена по времени более равномерно.

В дифференциальном компрессоре нижняя часть ц. н. д. является одновременно полостью ц. с. д. Поэтому такие компрессоры имеют меньшую высоту и массу.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-03-31 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: