СИСТЕМА ВОДЯНОГО ОТОПЛЕНИЯ С ЕСТЕСТВЕННОЙ ЦИРКУЛЯЦИЕЙ ТЕПЛОНОСИТЕЛЯ




Процесс отопления происходит по следующей схеме. Вода, нагретая в отопительном котле, как более легкая, поднимается по стояку вверх, поступает в разводящие магистральные трубопроводы, а из них через падающие стояки - в нагревательные приборы (радиаторы). Отдавая тепло, вода в радиаторе остывает, становиться более тяжелой и через трубы обратной разводки, соединенной со стояком, опускается в низ, поступает в нагревательный котел и своей массой вытесняет нагретую воду из котла вверх - в главный подающий стояк.

Пока нагревательный котел работает, этот процесс непрерывно повторяется и в результате в системе происходит циркуляция воды. Таким образом, вода двигается под действием гидростатического напора, возникающего благодаря различной плотности охлажденной и нагретой жидкости. Например, плотность воды при 400С составляет 992,24 кг/м3, при 700С - 977,8 кг/м3, при 950С - 961,9 кг/м3.

Циркуляционное давление зависит от разности весов столба горячей и столба охлажденной (обратной) воды, следовательно, оно зависит от разности температур горячей и охлажденной воды. Кроме того, циркуляционное давление зависти еще от высоты расположения нагревательных приборов (радиаторов) над котлом. Чем выше, расположен прибор, тем больше для него циркуляционное давление. Поэтому в системах водяного отопления нагревательные приборы, расположенные на верхнем этаже, прогреваются лучше, чем приборы на нижнем этаже. Ясно, что в двухтрубных системах отопления нагревательные приборы, расположенные на одном уровне с отопительным котлом или ниже его, нагреваться практически не будут. Для таких систем, как показывает практика, наименьшее расстояние между центром нагревательных приборов, расположенных на первом этаже, и центром отопительного котла должно быть не менее 3м. Поэтому котельная для такой системы должна располагаться в подвале. Указанного недостатка лишены однотрубные системы отопления, так как гидростатический напор, заставляющий циркулировать воду в системе, будет образовываться из-за охлаждения воды в трубопроводах, подводящих нагретую воду к радиаторам, а также отводящих охлажденную воду от радиаторов к отопительному котлу. Охлаждение указанных трубопроводов приносит двойную пользу. Во-первых, способствует созданию гидростатического напора, а во-вторых, дополнительному обогреву помещения. Поэтому трубопроводы прокладывают открыто и не изолируют. Что касается главного трубопровода (подъемного стояка горячей воды), то его, наоборот, надо тщательно теплоизолировать. Охлаждение воды в этом стояке приводит к снижению температуры и увеличению плотности воды, а это, как мы знаем, приводит к уменьшению гидростатического напора.


13. В системах панельного отопления тепло передается в помещение нагретыми поверхностями строительных конструкций (стенами, потолком, полом). Для этого в перекрытия, пол или стены заделывают змеевики из стальных труб, по которым циркулирует горячая вода. При таком способе помещение обогревается главным образом за счет лучистого тепла. Так, если обогревается потолок, то излучением передается до 70% всего тепла, поступающего в помещение, если обогреваются участки стены — до 50%.

Греющие потолок или пол выполняются в виде монолитных или сборных железобетонных конструкций с заделанными в них змеевиками Температура на поверхности панелей принимается равной: для стен не более 45° С, для потолков — 28—33° С (в зависимости от высоты помещений), для полов — 24—34° С (в зависимости от назначения помещения).

Системы панельного отопления могут применяться в зданиях любого назначения Особенно удобны они в сооружениях, к которым предъявляются повышенные санитарно-гигиенические требования (больницы, детские сады, ясли, санатории, дома отдыха и жилые здания).

Существенным достоинством панельных систем является возможность использования их в летний период для радиационного охлаждения помещений.

При воздушном отоплении в каждое помещение подается определенное количество теплого воздуха. Воздух нагревается в калориферах и подается в помещения по каналам. Охладившийся в помещениях воздух возвращается обратно в калорифер, где вновь нагревается. Для вентиляции помещения к такому воздуху может быть добавлена некоторая часть наружного воздуха. В системе воздушного отопления воздух может циркулировать за счет создаваемого вентиляторами механического побуждения, либо за счет разности объемных весов охлажденного и нагретого воздуха. Конструктивное решение системы воздушного отопления аналогично системе вентиляции.

Радиус действия системы воздушного отопления с вентиляторным побуждением составляет 25/30 м, поэтому такие системы применяются в промышленных и общественных зданиях (музеи, клубы, кинотеатры, торговые предприятия и др.). Радиус действия систем Воздушного отопления с естественным побуждением не превышает 10 м, поэтому в настоящее время они сооружаются редко.

Существенным достоинством систем воздушного отопления является незначительный расход металла, так как нагревательные приборы в помещениях отсутствуют, а каналы изготовляются из строительных материалов (бетон, шлакобетон, шлако-алебастровые плиты и т. п.).

К недостаткам таких систем относятся необходимость прокладки по всему зданию громоздких каналов для рециркуляционного воздуха. В частности, в предприятиях общественного питания системы с рециркуляцией воздуха не допускаются.


14. Трубы систем центрального отопления предназначены для подачи расчетного количества и отвода теплоносителя от отопительных приборов. Для пропуска теплоносителя используют трубы: металлические (стальные, медные, свинцовые и др.) и неметаллические (пластмассовые, стеклянные и др.).

Из металлических труб наиболее широко применяют стальные шовные (сварные) и бесшовные (цельнотянутые) трубы.

Стальные трубы изготовляют из мягкой углеродистой стали, что облегчает выполнение изгибов, резьбы на трубах и различных монтажных операций. Стоимость бесшовных труб выше, чем сварных, но они более надежны в эксплуатации и их рекомендуется использовать в местах, недоступных для ремонта.

Широкое применение стальных труб в системах центрального отопления обусловливается их прочностью, простотой и надежностью сварных соединений, близким соответствием коэффициента линейного расширения коэффициенту расширения бетона, что важно при заделке труб в бетон (например, в бетонных отопительных панелях).

Медные трубы в системах отопления отличаются долговечностью, но они менее прочны и дороже стальных. Свинцовые трубы встречаются в старых системах отопления, смонтированных в дореволюционное время.

Термостойкие пластмассовые трубы обладают пониженным коэффициентом трения, вследствие чего снижается гидравлическое сопротивление труб в системах отопления; они не зарастают и не подвержены коррозии. Гибкость пластмассовых труб некоторых видов, простота их обработки значительно облегчают монтаж, пониженная теплопроводность уменьшает теплопотери через их стенки. Внедрение пластмассовых труб в отопительную технику ограничивается повышенной стоимостью термостойких их видов, которые не размягчаются или не изменяют свою структуру (не «стареют») при длительном взаимодействии с теплоносителем.

Применение труб из малощелочного термостойкого стекла ограничивается хрупкостью стекла и ненадежностью мест их соединений с отопительными приборами и арматурой.

Стальные трубы, используемые в системах отопления, имеют вполне определенные диаметр (обусловливающий площадь поперечного сечения «канала» для протекания теплоносителя) и толщину стенки. Трубы сравнительно небольшого диаметра носят название водогазопроводных (ранее их называли «газовыми» трубами, так как они использовались для подачи газа к светильникам). Трубы большего диаметра — стальные электросварные и бесшовные ранее назывались «дымогарными» (применялись в паровозных котлах).

В системах отопления используют неоцинкованные (черные) стальные сварные водогазопроводные трубы (по ГОСТ 3262—62) обыкновенные, усиленные и легкие (в зависимости от толщины стенки). Усиленные трубы применяют редко — для уникальных долговременных сооружений со скрытой прокладкой труб; легкие трубы предназначаются под сварку или накатку резьбы для их соединения при открытой прокладке в системах водяного отопления; обыкновенные — при скрытой прокладке и в системах парового отопления.

Размер водогазопроводной трубы обозначается цифрой условного прохода (например, 20 мм). Водогазопроводная труба dy=20 мм имеет наружный диаметр 26,8 мм, а ее внутренний диаметр зависит от толщины стенки. Изменение внутреннего диаметра влияет на площадь поперечного сечения «канала» для протекания теплоносителя Следовательно, одно и то же количество теплоносителя будет двигаться в трубе одного и того же условного диаметра с различной скоростью в зависимости от толщины стенки, что важно учитывать при гидравлическом расчете труб.

Стальные электросварные (по ГОСТ 10704—63) и бесшовные трубы выпускаются со стенками различной толщины. Поэтому в условном обозначении такой трубы указывают наружный диаметр и толщину стенки (например, труба 76X3 мм имеет наружный диаметр 76 мм, толщину стенки 3 мм и внутренний диаметр 70 мм). Толщина стенки стальных труб определяется условиями эксплуатации, в том числе необходимостью обеспечения прочности при их деформации (например, при температурном удлинении).

Стальные трубы, применяемые в системах центрального отопления, выдерживают, как правило, большее гидростатическое давление (не менее 1 МПа или 10 кгс/см2), чем отопительные приборы и арматура. Поэтому в большинстве случаев предельное гидростатическое давление в системе устанавливается по давлению, допустимому не для труб, а для другого менее прочного элемента системы отопления (например, для отопительных приборов или арматуры).

ТЕПЛОПРОВОД

— труба, предназ-нач. в теплоснабжении, рля передачи теплоносителя (горячей воды или пара) потребителю. Существуют подземный и надземный способы прокладки теплопроводов. Подземный — осн. для городов и нас. пунктов, т.к. при нем не загромождается территория, не ухудшается архитектурный облик жилых р-иов, снижаются теплопотери за счет теплозащитных свойств грунта. На пром. площадках этот способ применяется при наличии проездов, не насыщ. подземными коммуникациями. Возможно использование для технологич. прокладок единых коллекторов. Промерзание грунта неопасно для теплопровода. Чем меньше глубина заложения тепловой сети, тем меньше объем земляных работ и ниже стоимость ее стр-ва. Подземные тепловые сети чаще всего прокладывают на глубине 0,5—2 м ниже поверхности земли, предпочтительно выше уровня грунтовых вод. При отсутствии такой возможности предусматривают попутный дренаж для понижения уровня вод в зоне заложения, а для наружных поверхностей строит, конструкций и закладных деталей.— обмазочную битумную изоляцию. При невозможности устройства попутного дренажа предусматривают оклеечную гидроизоляцию из битумных рулонных материалов с защитными ограждениями на высоту, превышающую макс, уровень грунтовых вод на 0,5 м, или др. эффективную гидроизоляцию. Трассу тепловых сетей в городах и др. нас. пунктах располагают в отвед. для инж. сетей технич. полосах параллельно красным линиям улиц, дорог и проездов вне проезжей части и полосы зеленых насаждений. Внутри микрорайонов и кварталов трассу тепловых сетей предусматривают также вне проезжей части дорог. Заглубление тепловых сетей от поверхности земли или дорожного покрытия принимают, м, не менее: до верха перекрытий каналов и тоннелей —.0,5, до верха перекрытий камер — 0,3, до верха оболочки бесканальной прокладки — 0,7. Строит, конструкции тепловых сетей при подземной прокладке принимают сборными из унифициров. железобет. и бетонных элементов.

 


15. Требования к качеству воды в хозяйственно-питьевом водопроводе В1 можно разбить на две группы:

- вода должна быть питьевой, согласно ГОСТ 2874-82*;

- вода должна быть холодной, то есть с температурой t +8... +11 С.

Стандарт на питьевую воду содержит показатели трёх типов:

1) ФИЗИЧЕСКИЕ: мутность, цветность, запах, привкус;

2) ХИМИЧЕСКИЕ: общая минерализация (не более 1 г/литр - это пресная вода), а также содержание неорганических и органических веществ не более предельно-допустимых концентраций (ПДК);

3) БАКТЕРИОЛОГИЧЕСКИЕ: не более трёх бактерий на литр воды.

Температура воды в пределах t +8... +11 С достигается за счёт контакта подземных труб наружного водопровода с грунтом, для чего эти трубы не теплоизолируются под землёй. Наружный водопровод прокладывается всегда на глубинах ниже зоны промерзания грунта, где круглый год температуры положительные.

СПОСОБ ОБРАБОТКИ ВОДЫ

Изобретение относится к очистке природных и сточных вод и может быть использовано в процессе водоподготовки в различных отраслях промышленности. Для осуществления способа поток воды в процессе обработки УФ-облучением турбулизуется, после этой обработки его ламинизируют и перед подачей на очистку на активированном угле дополнительно отделяют от него образовавшееся в процессе УФ-облучения нерастворимые частицы. Способ обеспечивает увеличение времени работы активированного угля и повышает эффективность очистки воды.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Изобретение относится к очистке природных и сточных вод и может быть использовано в процессах водоподготовки в различных отраслях промышленности.

Известен способ обработки воды, в котором поток воды облучают ультрафиолетовыми лучами в стерилизаторе.

Недостатком этого способа является невозможность очистки воды от растворенных элементов.

Наиболее близким к изобретению по техническим решениям является способ обработки воды, включающий отделение нерастворимых частиц, обработку УФ-облучением, очистку на активированном угле и ионообменных смолах.

Однако при обработке воды, содержащей, например, ионы железа, происходит забивание фильтров с активированным углем и ионообменными смолами.

Техническим результатом изобретения является увеличение времени работы активированного угля и ионообменных смол и повышение степени очистки.

Для этого в способе обработки воды поток воды в процессе обработки УФ-облучением турбулизируют, а после этой обработки ламинизируют и перед подачей на очистку на активированном угле дополнительно отделяют от него нерастворимые частицы, образовавшиеся в процессе УФ-облучения.

На чертеже показано устройство для осуществления предложенного способа.

Устройство содержит фильтр 1 очистки от механических примесей (нерастворимых частиц), установку 2 УФ-облучения, дополнительный фильтр 3 очистки от нерастворимых частиц, фильтр 4 с активированным углем и фильтр 5 с ионообменными смолами.

Устройство работает следующим образом.

Поток воды поступает на фильтр 1, где происходит отделение механических примесей, содержащихся в воде. Далее поток поступает в установку 2, где подвергается обработке УФ-облучением лампой 6. При обтекании турбулизирующих элементов 7 поток закручивается, что позволяет осуществлять перемешивание слоев воды, в результате чего происходит равномерное облучение всего объема УФ-излучением. Кроме того, за турбулизирующими элементами 7 образуются зоны пониженного давления, в которых появляются паровоздушные пузыри. В результате ионизации смеси, содержащейся в этих пузырях, УФ-лучами происходит более интенсивная активация молекул кислорода, чем активация молекул кислорода, растворенного в воде. Это, с одной стороны, усиливает процесс разложения органических примесей и угнетения микроорганизмов, а, с другой стороны, осуществляет интенсивное окисление ионов железа до нерастворимых гидроксидных соединений. На выходе из установки 2 поток воды ламинизируют для того, чтобы процесс осаждения нерастворимых гидроксидов железа в фильтре 3 происходил равномерно. Далее поток воды поступает на чистку в фильтры 4 и 5 и затем поступает к потребителю.

П р и м е р. Исходная вода содержит железа 2,2 мг/л и кислорода 4,6 мг/л. В установке УФ-облучения обеспечивается проток воды со скоростью 1 м/с. Длина волны УФ-излучения 210 нм. В качестве турбулизирующих элементов использованы лопасти неаэродинамического профиля. Результаты экспериментального исследования приведены в таблице.

Таким образом, предложенный способ позволяет повысить эффективность обработки воды и увеличить срок службы наполнителей фильтров вследствие проведения режимов очистки в наиболее благоприятных условиях.

ФОРМУЛА ИЗОБРЕТЕНИЯ

СПОСОБ ОБРАБОТКИ ВОДЫ, включающий отделение нерастворимых частиц, обработку УФ-облучением, очистку на активированном угле и ионообменных смолах, отличающийся тем, что поток воды в процессе обработки УФ-облучением турбулизируют, а после этой обработки ламинизируют и перед очисткой на активированном угле дополнительно отделяют образовавшиеся в процессе УФ-облучения нерастворимые вещества.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-15 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: