Как мозг регулирует эмоции и эмпатию




 

Системы мозга, отвечающие за распознавание чужих эмоций и реакции на них, а также за формирование собственных эмоций и эмпатии, называют основными (рис. 26–1). Для нормальной жизни нам требуется способность прогнозировать и регулировать собственные эмоции и эмпатию. Эту способность обеспечивают модуляторные системы мозга. Они не могут включать и выключать основные системы, но настраивают их. Они похожи скорее на регулятор громкости радиоприемника, чем на выключатель.

Модуляцию эмоций и эмпатии в мозге обеспечивают врожденные восходящие процессы (в значительной степени генетически предопределенные) и нисходящие (опирающиеся на умозаключения и опыт). И те, и другие процессы влияют на наши социальные и эмпатические связи и способствуют, через “вклад зрителя”, восприятию произведений искусства (рис. 26–2). Поскольку с работой модуляторных нейронов связаны многие психические расстройства, например шизофрения и депрессия, и действие психотропных средств, они исключительно важны для медицины и фармакологии.

 

Рис. 26–1.

 

Мы лишь начинаем разбираться в нисходящей модуляции, но в ключевых восходящих модуляторных процессах в мозге нам уже многое понятно.

 

Большинство из шести восходящих модуляторных систем, которые ученым удалось найти в мозге, состоят из сравнительно небольшого числа нейронов (обычно нескольких тысяч). Однако эти нейроны связаны со многими отделами коры, в том числе с управляющими возбуждением, настроением, научением и регуляцией работы автономной нервной системы. Каждая модуляторная система отвечает за свою сторону эмоциональной жизни, и каждая запрограммирована на сотрудничество с другими, позволяющее мозгу формировать сложные эмоциональные состояния. Вещества, выделяемые этими нейронами, играют роль не только обычных нейромедиаторов, ненадолго активирующих рецепторы другого нейрона в синапсе, где эти вещества выделяются, но и роль нейрогормонов, способных активировать рецепторы нейронов, расположенных довольно далеко от места выделения.

 

Рис. 26–2. Нисходящая и восходящая модуляция нейронных сетей, задействован-ных во “вкладе зрителя” и социальной системе мозга.

 

Рис. 26–3.

 

Нейроны, управляющие нисходящей модуляцией, располагаются в переднем мозге, особенно в префронтальной коре, а нейроны, управляющие восходящей модуляцией, в основном концентрируются в среднем или заднем мозге (рис. 26–3). Аксоны нейронов системы восходящей модуляции протянуты во многие отделы мозга, участвующие в управлении эмоциями, мотивацией, вниманием и памятью, в том числе в миндалевидное тело, полосатое тело, гиппокамп и префронтальную кору. Эти структуры, в свою очередь, посылают информацию обратно в системы восходящей модуляции, обеспечивая нисходящий контроль их работы. При этом модуляторные системы выделяют разные нейромедиаторы, каждый из которых оказывает специфическое влияние на нашу физиологию и поведение.

Основные системы восходящей модуляции включают дофаминергическую (задействованную в ожидании или предсказании вознаграждения и восприятии неожиданных, ярких событий), эндорфиновую (приносящую чувство удовольствия и подавляющую боль), окситоциново-вазопрессиновую (обеспечивающую привязанность, социальное взаимодействие и доверие), норадренергическую (участвующую в концентрации внимания и стремлении к новизне, а также играющую роль в обеспечении некоторых форм страха), серотонергическую (способствующую формированию ряда эмоциональных состояний, в том числе ощущения безопасности, радости и грусти) и холинергическую (связанную с вниманием и хранением памяти).

Большинство психических явлений, важных для социальной жизни, например внимание, память, сострадание и эмоции, во многом обеспечиваются именно системами восходящей модуляции. Нарушение их работы может быть связано с серьезными психическими расстройствами. Так, повышенная активность дофаминергической системы часто наблюдается при шизофрении; пониженная активность серотонергической и норадренергической систем способствует депрессии; повышенная активность норадренергической системы может приводить к посттравматическому стрессовому расстройству, а пониженная активность холинергической системы сопряжена с когнитивными нарушениями, сопровождающими некоторые формы болезни Альцгеймера. Когда же все системы работают как следует, они поддерживают восприятие и реакции в пределах того, что мы считаем нормой.

 

Первой из систем нисходящей модуляции была подробно изучена дофаминергическая, нейроны которой выделяют нейромедиатор дофамин и участвуют в положительном подкреплении. Дофаминергические нейроны – самые многочисленные из модуляторных нейронов мозга: в голове их около 450 тыс., примерно поровну в каждом полушарии. Тела этих клеток расположены в двух отделах среднего мозга: черной субстанции и вентральной области покрышки. В черной субстанции дофаминергических клеток больше всего. Аксоны этих клеток ведут к базальным ганглиям и способствуют запуску движений в ответ на внешние стимулы. В вентральной области покрышки, задействованной в ощущении награды, таких нейронов меньше. Их аксоны ведут в гиппокамп, миндалевидное тело и префронтальную кору. Таким образом, аксоны дофаминергических нейронов расходятся по многим отделам мозга и модулируют работу нескольких его систем.

Участие дофаминергической системы в положительном подкреплении случайно открыли Джеймс Олдс и Питер Милнер, обнаружившие, что электрическая стимуляция ряда участков в глубине мозга может стимулировать поведение, обычно связанное с получением награды. Как ни удивительно, у многих животных, в том числе у людей, такая стимуляция может служить не менее эффективным средством подкрепления, чем реальная награда, хотя и отличается от нее одной существенной особенностью. Обычная награда эффективна лишь в том случае, если животное испытывает соответствующую потребность. Так, пища может служить наградой лишь тогда, когда животное голодно. Что же касается стимуляции участков, расположенных в глубине мозга, она действует независимо от потребностей. Крысы, научившиеся самостоятельно стимулировать такие участки мозга нажатием на рычажок, предпочитают самостимуляцию и питанию, и спариванию. В обзорной статье, опубликованной в 1955 году в журнале “Сайенс”, Олдс писал, что подопытные животные умирают от голода после нескольких недель непрерывной самостимуляции. Олдс и Милнер пришли к выводу, что такая стимуляция активирует нейронные системы, которые обычно активируются реальной наградой.

Наградой называют объекты, стимулы, действия и физиологические состояния, имеющие положительное значение для человека или животного. Награда обеспечивает субъективные ощущения удовольствия и способствует положительным эмоциям. Она играет в поведении роль положительного подкрепления, увеличивая частоту или степень проявления форм поведения, позволяющих ее получить.

Сложная природа взаимодействий организма и среды требует особых механизмов, позволяющих не только распознавать стимулы, которые могут служить наградой или наказанием, но и на основании опыта спрогнозировать их появление в будущем. Многое из того, что нам известно о положительном подкреплении, открыл еще в начале XX века Иван Павлов (гл. 18).

Исследования дофаминергической системы показали, что она реагирует не только на саму награду, но и (даже сильнее) на стимулы, позволяющие ее ожидать. Многие годы психологи полагали, что для выработки условного рефлекса требуется одновременное (или почти одновременное) предъявление нейтрального условного стимула (сенсорного) и безусловного стимула (награды), позволяющее сформироваться ассоциации между теми и другими ощущениями. Согласно этим представлениям, всякий раз, когда стимулы предъявляются вместе, нейронная связь между ними усиливается до тех пор, пока не становится достаточно сильной, чтобы сказаться на поведении. Предполагалось, что сила условного рефлекса зависит исключительно от числа таких предъявлений.

Однако в 1969 году американский психолог Леон Кэмин совершил открытие, которое считается одним из важнейших, сделанных в этой области после Павлова. Кэмин установил, что животные научаются не просто тому, что нейтральный стимул предшествует награде, а тому, что он позволяет ожидать награды. Следовательно, ассоциативное научение определяется не критическим числом предъявлений двух стимулов вместе, а возможностью прогнозировать по нейтральному стимулу получение биологически значимой награды.

Эти открытия позволяют предположить, отчего у людей и животных так легко вырабатываются условные рефлексы. По-видимому, все формы ассоциативного научения развились в ходе эволюции потому, что давали возможность отличать закономерно связанные события от случайно сочетающихся, тем самым позволив нам прогнозировать последствия. В итоге мы можем научиться, например, ожиданию вкуса изысканного красного вина уже тогда, когда подносим к губам бокал “Шатонеф-дю-Пап” и улавливаем аромат.

Научение происходит тогда, когда реальные последствия отличаются от прогнозируемых. Существует множество форм поведения, на которые влияет ожидание награды. Когда награда оказывается не такой, как ожидалось, эти формы поведения претерпевают долговременные изменения. Когда же награда соответствует ожиданиям, поведение остается прежним.

Физиологи продемонстрировали, что дофаминергические нейроны задействованы в разных формах научения, связанных с положительным подкреплением. Эти нейроны активируются не только при ожидании награды, но и при получении неожиданной награды, а также при ошибках в ожидании награды. На такие ошибки указывают колебания уровня дофамина в дофаминергической системе. Это привело к предположению, что дофамин играет роль обучающего сигнала. Связь дофаминергических нейронов с миндалевидным телом, вероятно, позволяет им регулировать его реакции на ожидаемое положительное подкрепление, например на награду в экспериментах с научением.

Механизм работы дофаминергических нейронов при научении выяснил Вольфрам Шульц, работающий в настоящее время в Кембриджском университете. Регистрируя активность клеток вентральной области покрышки и черной субстанции, Шульц обнаружил, что эти нейроны возбуждаются при неожиданном получении награды, при ожидании награды и при ошибках в ожидании награды. В последнем случае возбуждение наблюдается лишь тогда, когда награда оказывается лучше ожидаемой – в противном случае активность нейронов подавляется. Активность этих нейронов усиливается также при получении неожиданной награды, а подавляется при неполучении ожидаемой награды. Если же награда в точности соответствует ожиданиям, данные клетки на нее не реагируют.

Данные Шульца согласуются с представлениями Дарвина о полярной регуляции эмоций, основанной на стремлении и избегании (или на борьбе и бегстве). Дофаминергические нейроны активируются и при получении реальной награды (во время приема пищи, секса, употребления психотропных веществ), и при восприятии стимулов, позволяющих ожидать ее получения. Таким образом, поток дофамина запускается даже простейшим ожиданием удовольствия, хотя это удовольствие, может быть, и не удастся получить.

Как можно было предположить, вещества, усиливающие или продлевающие естественное действие дофамина, приносят нам большее удовольствие. Зависимость, вызываемая рядом психотропных веществ, например кокаином или амфетамином, связана именно с тем, что они сбивают с толку дофаминергическую систему, заставляя мозг думать, будто он получает награду, хотя никакой награды нет (рис. 26–4).

Система удовольствия мозга активируется и тогда, когда мы наслаждаемся произведением искусства, или любуемся закатом, или смакуем вкусный обед, или занимаемся сексом. Во всех перечисленных случаях наши ощущения отнюдь не ограничиваются восходящими процессами выделения дофамина, а включают, как мы убедимся, и нисходящие процессы, связывающие данный опыт с предшествующим, в том числе с испытанными ранее удовольствиями. Восприятие произведений искусства и других объектов эстетического наслаждения, как и вообще приятные эмоциональные реакции, включает не только непосредственное действие физического стимула, но и запускаемую им последовательность бессознательных умозаключений, порождающих контекст, в котором мы его воспринимаем.

 

Рис. 26–4. Дофаминергические нейроны полосатого тела реагируют на всевозможные стимулы, доставляющие нам удовольствие.

 

Вторая система восходящей модуляции подавляет страдание и “прибавляет громкость” удовольствий, в том числе связанных с эстетическим наслаждением. Эта система выделяет нейромедиаторы эндорфины, представляющие собой пептиды – сложные вещества, молекулы которых состоят из небольших цепочек аминокислот. В молекуле эндорфина шесть или семь аминокислот. Эндорфины играют роль естественных болеутоляющих. Их выделяет гипоталамус, регулирующий работу гипофиза. Действие эндорфинов, подавляющих болевые реакции и вызывающих ощущение хорошего самочувствия, напоминает действие морфия. Выделение эндорфинов происходит, в частности, в результате сильной физической нагрузки. Профессиональные спортсмены называют это явление “эндорфиновым кайфом”. Более того, многие из них в отсутствие привычной нагрузки испытывают своего рода “ломку” и жалуются на вялость и депрессию. Эндорфины выделяются также при нервном возбуждении, при боли, употреблении острой пищи и при оргазме.

Эндорфины были открыты в 1975 году Джоном Хьюзом и Хансом Костерлицем. Эти нейромедиаторы действуют в мозге на опиоидные рецепторы, открытые Соломоном Снайдером из Университета им. Джона Хопкинса. Считается, что эндорфины выделяются в ответ на те же стимулы, что приводят к выделению дофамина, и участвуют в ощущениях удовольствия, вызываемых дофамином.

 

Третья модуляторная система выделяет окситоцин и вазопрессин – нейромедиаторы, играющие важную роль в сексе и заботе о потомстве, а также в социальном поведении в целом, социальных когнитивных функциях и нашей способности “читать мысли” и распознавать намерения других. И окситоцин, и вазопрессин представляют собой пептиды, синтезируемые в гипоталамусе (как и большинство пептидных нейромедиаторов). Оттуда они транспортируются в заднюю долю гипофиза, где выделяются в кровь и активируют рецепторы в разных частях мозга.

Окситоцин и вазопрессин встречаются у множества животных, от червей и мух до млекопитающих, и гены, кодирующие эти пептиды, необычайно схожи. Многое из того, что мы знаем об эффектах вазопрессина и окситоцина, впервые выяснилось в ходе экспериментов, которые провели Томас Инсел, Ларри Янг и их коллеги, изучавшие желтобрюхую полевку и горную полевку – грызунов двух близкородственных видов с очень несхожим половым поведением.

Желтобрюхие полевки моногамны, вместе воспитывают потомство, а горные отличаются беспорядочностью половых связей и живут поодиночке. Различия в поведении видов проявляются уже в первые дни жизни полевок. Самцы и самки желтобрюхой полевки после спаривания сразу вырабатывают устойчивое предпочтение к партнеру. Впоследствии самец помогает самке воспитывать потомство и ведет себя агрессивно по отношению к другим самцам. Самец горной полевки, напротив, стремится оплодотворить как можно больше самок и заботу о потомстве никак не проявляет. Впечатляющие различия в поведении самцов этих видов коррелируют с разницей в количестве выделяемого в мозге полевок вазопрессина. Во время спаривания у самцов моногамной желтобрюхой полевки вазопрессин выделяется в большом количестве, а у самцов полигамной горной полевки – в небольшом. У самок желтобрюхой полевки привязанность к партнеру вырабатывается благодаря окситоцину. У многих видов, в том числе у людей, грызунов и кроликов, вазопрессин задействован в эрекции и эякуляции, а также в мужском социальном поведении – от привязанности к партнерше до охраны территории и агрессии.

Окситоцин у всех животных влияет на социально-половое поведение самок: привязанность к партнеру, спаривание, роды и заботу о потомстве, в том числе кормление детенышей. Окситоцин выделяется при половой стимуляции и во время родов, когда он способствует схваткам и появлению детенышей на свет, а затем образованию и выделению молока. У грызунов введение окситоцина может вызывать формирование материнской привязанности к чужому детенышу. Окситоцин взаимодействует с дофаминергической системой награды. В некоторых случаях он выделяется при стрессе и тогда притупляет реакции на факторы стресса. А вазопрессин выделяется при половой стимуляции, расширении шейки матки, стрессе и обезвоживании и активно участвует в социальном поведении.

Окситоцин и вазопрессин играют важную роль в социальном поведении людей. Окситоцин способствует положительным социальным взаимодействиям, усиливая релаксацию, доверие, эмпатию и альтруизм. Генетическая изменчивость рецепторов, реагирующих на окситоцин и вазопрессин, вероятно, сказывается на работе мозга и служит одним из факторов, определяющих различия в социальном поведении. Сарина Родригес и ее коллеги из Калифорнийского университета в Беркли открыли, что такая генетическая изменчивость влияет на эмпатическое поведение через нарушения способности распознавать мимические выражения и сопереживать страданиям.

Петер Кирш и его коллеги из группы когнитивной нейропсихологии Гиссенского университета выяснили, что окситоцин регулирует работу нейронных систем, отвечающих за социальные когнитивные функции. Введение людям окситоцина существенно снижает активацию миндалевидного тела и ослабляет физиологические и поведенческие проявления страха. Кроме того, судя по всему, оно усиливает положительное общение, по крайней мере отчасти – за счет снижения выработки кортизола (одного из гормонов стресса), что способствует релаксации.

Психолог Михаэль Косфельд и его коллеги из Цюриха установили, что окситоцин усиливает доверие, а через это и готовность идти на риск. Поскольку доверие необходимо для дружбы, любви и семейной жизни (не говоря уже о товарообмене), действие окситоцина может существенно сказываться на поведении людей. Так, окситоцин влияет на нашу готовность идти на риск и совершать альтруистические поступки.

Даже когда мы просто смотрим на лица людей, с которыми нас связывают доверительные отношения, у нас активируется гипоталамус и начинается выделение окситоцина. Последний вызывает выделение эндорфинов, свидетельствующее о том, что взаимодействие с такими людьми само по себе доставляет нам удовольствие и может служить положительным подкреплением. Есть все основания полагать, что окситоцин усиливает эмпатию и привязанность и в наших отношениях с некоторыми произведениями искусства.

 

Четвертая система восходящей модуляции выделяет норадреналин – нейромедиатор, усиливающий настороженность. Норадреналин, который выделяется в большом количестве при стрессе, способствует возникновению чувства страха. Некоторые норадренергические нейроны активизируются в ходе освоения новых заданий. Кроме того, дофаминергические и норадренергические нейроны отвечают за долговременные изменения некоторых синапсов, обеспечивающих научение.

Норадренергических нейронов у нас в мозге удивительно мало – всего около 100 тыс. Они сгруппированы в голубом пятне – парном отделе в правой и левой половинах среднего мозга. Несмотря на немногочисленность, эти нейроны играют важную роль в регуляции эмоций, в том числе при реакциях стресса, сопровождающих тревожные расстройства (например, посттравматическое стрессовое расстройство). Аксоны этих нейронов протянуты по всей центральной нервной системе: они ведут в спинной мозг, в гипоталамус, в гиппокамп, в миндалевидное тело и кору больших полушарий, особенно префронтальную. Норадреналин позволяет нам сохранять бдительность и готовность реагировать на неожиданные внешние стимулы, особенно неприятные. Он вызывает повышение частоты сердечных сокращений и давления крови и играет важную роль в реакции борьбы или бегства.

Норадренергические нейроны играют важную роль во внимании. Если заблокировать действие норадреналина на рецепторы подопытного животного, это не скажется на его памяти о событиях как таковых, но скажется на памяти об их эмоциональном содержании. Так, у животного, выработавшего условный рефлекс, связанный со страхом, подавление работы норадреналина нарушает память о болезненном стимуле, а введение вещества, усиливающего действие норадреналина, усиливает и память о данном стимуле, который начинает вызывать еще больший страх.

Испытуемые, которые принимали плацебо, а затем прослушивали эмоционально насыщенный рассказ, сопровождаемый показом изображений, особенно отчетливо помнили изображения, увиденные во время прослушивания самой эмоциональной части рассказа. Испытуемые из другой группы, принимавшие вещество, подавляющее действие норадреналина, запоминали эти изображения не лучше, чем другие.

 

Пятая система восходящей модуляции, серотонергическая – возможно, самая древняя. У таких беспозвоночных, как насекомые или моллюски, норадреналин не вырабатывается, однако серотонин имеется – и участвует в регуляции поведения. У людей серотонергические нейроны образуют девять парных групп вдоль средней линии ствола. Их аксоны протянуты в несколько отделов мозга, в том числе в миндалевидное тело, полосатое тело, гипоталамус и кору больших полушарий. Эти нейроны играют важную роль в возбуждении, бдительности и настроении. У людей низкая концентрация серотонина связана с депрессией, агрессией и сексуальностью, а крайне низкая коррелирует с попытками самоубийства. Самые эффективные фармакологические средства борьбы с депрессией основаны на способности некоторых препаратов повышать концентрацию серотонина в мозге. Высокая концентрация этого нейромедиатора коррелирует с безмятежностью и задумчивостью, а также с трансцендентальными ощущениями, духовным опытом. Препараты, регулирующие работу некоторых классов серотониновых рецепторов (например ЛСД), способны вызывать эйфорию и галлюцинации, часто сопряженные с трансцендентальными ощущениями.

 

Шестая система восходящей модуляции – холинергическая. Она выделяет нейромедиатор ацетилхолин и осуществляет регуляцию цикла сна и бодрствования, а также ряда аспектов когнитивной деятельности, например научения, внимания и памяти. Холинергические нейроны располагаются в нескольких отделах мозга, а их аксоны протянуты в гиппокамп, миндалевидное тело, таламус и кору больших полушарий (в том числе префронтальную). Холинергические нейроны регулируют выделение дофамина и так могут управлять реакциями, связанными с ожиданием награды и ошибками в ее ожидании. Особенно важная группа холинергических нейронов в основании переднего мозга участвует в хранении памяти. Аксоны нейронов этой группы протянуты в миндалевидное тело, гиппокамп и префронтальную кору.

 

Шесть систем восходящей модуляции – доставшиеся нам от довольно далеких предков средства управления эмоциями. Некоторые системы имеются и у беспозвоночных, например у круглых червей, плодовых мушек и брюхоногих моллюсков. Функции этих систем перекрываются, но у каждой особый набор функций. Совместная работа всех шести систем необходима нам для хорошего самочувствия, нормальной работы головного мозга и способности адекватно реагировать на внешние стимулы и прогнозировать их возникновение.

 

Эволюция наделила нас и системами нисходящей модуляции, осуществляющими когнитивный контроль над положительными и отрицательными ощущениями и эмоциями. Средства такого контроля представлены в высших отделах коры больших полушарий. Нормальная жизнь человека невозможна без связанных с этими системами способности управлять своими эмоциями и умения оценивать их и при необходимости переоценивать.

Порой кажется, что все беды ополчились на нас, но мы обладаем исключительной способностью регулировать подобные эмоции. От успеха такой регуляции зависит, как повлияют жизненные трудности на наше психическое и физическое благополучие. Кевин Окснер, один из ведущих специалистов по системам нисходящей регуляции, приводит по этому поводу замечание Шекспира о психике и ее способности к регуляции когнитивной деятельности[191]: “Нет ничего ни хорошего, ни плохого; это размышление делает все таковым”[192].

Из форм нисходящего контроля над эмоциями лучше прочих изучена переоценка собственных чувств. Эмоциональный эффект того или иного события, образа, даже неприятного, можно снизить и нейтрализовать, безэмоционально взвесив свои впечатления. Именно переоценка лежит в основе когнитивной поведенческой терапии, разработанной психоаналитиком Аароном Беком из Пенсильванского университета. Эта форма терапии призвана дать людям, страдающим от депрессии, возможность оценить подоплеку своего состояния более реалистично и беспристрастно.

Окснер и его коллеги исследовали с помощью функциональной магнитно-резонансной томографии нейронные системы, задействованные в безэмоциональной переоценке воспоминаний об очень неприятной сцене. Исследователи обнаружили, что в ходе такой переоценки повышается активность дорсолатеральной и вентролатеральной (орбитофронтальной) областей префронтальной коры, прямо связанных с миндалевидным телом и гипоталамусом. Повышение активности этих отделов сопровождалось снижением активности миндалевидного тела. Эти данные согласуются с представлениями об уже известном нам механизме: высшие отделы мозга управляют эмоциями и оценивают их не только через прямые связи с гипоталамусом, но отчасти и через регуляцию работы миндалевидного тела, и в основе этого нисходящего процесса лежит способность префронтальной коры оценивать значимость стимулов.

Дорсолатеральная область префронтальной коры также осуществляет когнитивный контроль над рабочей памятью и выбором реакций. Таким образом, переоценка служит средством управления эмоциями, необходимого для решения задач, которые требуют понимания причин наших эмоциональных реакций. Открытие механизма переоценки позволяет предположить, что подобный когнитивный контроль участвует во многих других формах регуляции эмоций. Окснер делает вывод, что высшие отделы префронтальной коры могут регулировать не только эмоции, но и мысли.

 

Исследования модуляции и модуляторных систем позволили нам приблизиться к пониманию биологических механизмов эмоций и эмоциональной стороны эстетического восприятия, то есть того, как мозг зрителя воссоздает эмоциональные состояния, закодированные в произведении искусства, и как эмоции, подражание и эмпатия представлены в мозге. Уже имеющиеся у нас знания о биологии и когнитивной психологии восприятия, эмоций и эмпатии помогают разобраться в причинах власти искусства над чувствами.

Модуляторные системы, управляющие разными эмоциями, могут по-разному воздействовать на одни и те же зоны мозга (например префронтальную кору или миндалевидное тело). Поэтому точное сочетание эмоций, испытываемых нами при рассматривании того или иного произведения искусства, отчасти определяется и миндалевидным телом, и полосатым телом, и префронтальной корой, и каждой из систем регуляции эмоций. Работа этих модуляторных систем с их специфическими, но перекрывающимися функциями позволяет нам легко переходить из одного эмоционального состояния в другое.

Картина Климта “Юдифь” (рис. I–20) может служить хорошим примером сложности эмоций, которые мы в состоянии испытывать, глядя на произведение искусства. В иудейской традиции Юдифь считалась отважной и самоотверженной спасительницей своего народа. В эпоху Возрождения Юдифь было принято изображать как идеализированную молодую героиню, какой ее показал, например, Караваджо (рис. I–21). Климт переосмыслил ее образ и сделал его более эротичным. Он запечатлел Юдифь как сексуально возбужденную женщину, в которой эротические желания сочетаются с садистским удовлетворением от убийства Олоферна. Отсечение его головы, которую Юдифь прижимает к груди, предстает высшей степенью кастрации.

Как отреагируют на картину модуляторные системы предполагаемого зрителя? На базовом уровне золотистое сияние фона, мягкие тона тела Юдифи и гармоничное сочетание цветов в целом может вызвать активацию системы удовольствия, стимулируя выброс дофамина. Если при виде гладкой кожи и обнаженной груди Юдифи у зрителя происходит выброс эндорфинов, окситоцина и вазопрессина, он может испытать половое возбуждение. Подразумеваемое насилие и оттенок садистского наслаждения, улавливаемый во взгляде Юдифи и ее приподнятой верхней губе, могут вызвать выброс норадреналина, который приведет к повышению частоты сердечных сокращений и давления крови и вызовет реакцию борьбы или бегства. При этом мягкие линии и повторяющиеся узоры могут, напротив, стимулировать выброс серотонина. По мере того как зритель вбирает этот сложный образ с его многогранным эмоциональным содержанием, в гиппокамп выделяется ацетилхолин, способствующий сохранению в памяти увиденного. В конечном счете привлекательность подобных картин связана именно с их сложностью, вызывающей в мозге зрителя активацию ряда часто противоречивых сигналов, которые вместе вызывают всплеск ошеломляюще разносторонних эмоций.

Исследования биологических механизмов регуляции эмоций и эмпатии только начались. Они сулят нам возможность рано или поздно разобраться в том, почему искусство имеет над нами такую власть.

 

 

Часть V



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-03-31 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: