Физические величины целесообразно разделить на измеряемые и оцениваемые.




МЕТРОЛОГИЯ

1.1 Предмет и разделы метрологии

Метрология -наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.

Задачей метрологии является обеспечение единства и необходимой точности измерений.

Предметом метрологии является извлечение количественной информации о свойствах объектов с заданной точностью и достоверностью; нормативная база для этого — метрологические стандарты.

Метрология делится на 3 самостоятельных раздела:

Законодательная метрология, предметом которой является установление обязательных технических и юридических требований по применению единиц физических величин, эталонов, методов и средств измерений, направленных на обеспечение единства и необходимой точности измерений в интересах общества.

Теоретическая метрология – раздел метрологии, предметом которого является разработка фундаментальных основ метрологии.

Практическая метрология - раздел метрологии, предметом которого являются вопросы практического применения разработок теоретической метрологии и положений законодательной метрологии.

Цели и задачи метрологии: Создание общей теории измерений; образование единиц физических величин и систем единиц; разработка и стандартизация методов и средств измерений, методов определения точности измерений, основ обеспечения единства измерений и единообразия средств измерений (так называемая «законодательная метрология»); создание эталонов и образцовых средств измерений, поверка мер и средств измерений. Приоритетной подзадачей данного направления является выработка системы эталонов на основе физических констант. Также метрология изучает развитие системы мер, денежных единиц и счёта в исторической перспективе.

1.2Классификация величин

Величина — это свойство чего-либо, что может быть выделе­но среди других свойств и оценено тем или иным способом, в том числе и количественно. Величина не существует сама по себе, она имеет место лишь постольку, поскольку существует объект со свой­ствами, выраженными данной величиной.

Величины можно разделить на два вида: реальные и идеаль­ные.

Идеальные величины главным образом относятся к математи­ке и являются обобщением (моделью) конкретных реальных по­нятий.

Реальные величины делятся, в свою очередь, на физические и нефизические. Физическая величина (ФВ) в общем случае может быть определена как величина, свойственная материальным объек­там (процессам, явлениям), изучаемым в естественных (физика, химия) и технических науках. К нефизическим следует отнести величины, присущие общественным (нефизическим) наукам — философии, социологии, экономике и т.д.

Физическую величину трактуют, как одно из свойств физического объекта, в качественном отноше­нии общее для многих физических объектов, а в количествен­ном — индивидуальное для каждого из них. Индивидуальность в количественном отношении понимают в том смысле, что свой­ство может быть для одного объекта в определенное число раз больше или меньше, чем для другого. Таким образом, физические величины — это измеренные свойства физических объектов и про­цессов, с помощью которых они могут быть изучены.

Физические величины целесообразно разделить на измеряемые и оцениваемые. Измеряемые ФВ могут быть выражены количественно в виде определенного числа установленных единиц измерения. Возможность введения и использования последних является важ­ным отличительным признаком измеряемых ФВ. Физические ве­личины, для которых по тем или иным причинам не может быть введена единица измерения, могут быть только оценены. Величи­ны оценивают при помощи шкал. Шкала величины — упорядочен­ная последовательность ее значений, принятая по соглашению на основании результатов точных измерений.

Нефизические величины, для которых единица измерения в прин­ципе не может быть введена, могут быть только оценены. Стоит отметить, что оценивание нефизических величин не входит в за­дачи теоретической метрологии.

 

1.3 Физические величины и их классификация

Физические величины целесообразно разделить на измеряемые и оцениваемые.

Измеряемые физические величины могут быть выражены количественно в виде определенного числа установленных единиц измерения. Возможность введения и использования последних является важным отличительным признаком измеряемых физических величин.

Физические величины, для которых по тем или иным причинам не может быть введена единица измерения, могут быть только оценены. Величины оценивают при помощи шкал.

По видам явлений физические величины делятся на следующие группы:

- вещественные, то есть описывающие физические и физико-химические свойства веществ, материалов и изделий из них. К этой группе относятся масса, плотность, электрическое сопротивление, емкость, индуктивность и др. Иногда указанные физические величины называют пассивными. Для их измерения необходимо использовать вспомогательный источник энергии, с помощью которого формируется сигнал измерительной информации. При этом пассивные физические величины преобразуются в активные, которые и измеряются;

- энергетические, то есть величины, описывающие энергетические характеристики процессов преобразования, передачи и использовании энергии. К ним относятся ток, напряжение, мощность, энергия. Эти величины называют активными. Они могут быть преобразованы в сигналы измерительной информации без использования вспомогательных источников энергии;

- характеризующие протекание процессов во времени - К этой группе относятся различного рода спектральные характеристики, корреляционные функции и др.

По принадлежности к различным группам физических процессов физические величины делятся на пространственно-временные, механические, тепловые, электрические и магнитные,акустические, световые, физико-химические, ионизирующих излучений, атомной и ядерной физики.

По степени условной независимости от других величин данной группы физические величины делятся на основные (условно независимые), производные (условно зависимые) и дополнительные. В настоящее время в системе СИ используется семь физических величин, выбранных в качестве основных: длина, время, масса,температура, сила электрического тока, сила света и количество вещества. К дополнительным физическим величинам относятся плоский и телесный углы. По наличию размерности физические величины делятся на размерные, то есть имеющие размерность, и безразмерные.

Единица ФВ [Q] – это ФВ фиксированного размера, которой условно присвоено числовое значение, равное единице, применяется для количественного выражения однородных ФВ.

Значение физической величины Q – это оценка её размера в виде некоторого числа принятых для нее единиц.

Числовое значение физической величины q - отвлеченное число, выражающее отношение значения величины к соответствующей единице данной ФВ.

Уравнение Q = q[Q] называют основным уравнением измерений.

Суть простейшего измерения состоит в сравнении физической величины Q с размерами выходной величины регулируемой многозначной меры q[Q]. В результате сравнения устанавливают, что

q[Q]<Q<(q+1)[Q].

Измерение – познавательный процесс, заключающийся в сравнении путем физического эксперимента данной ФВ с известной ФВ, принятой за единицу измерения.

 

1.4 Шкалы измерений, их характеристика

ШКАЛА ИЗМЕРЕНИЙ - основополагающее понятие метрологии, позволяющее количественно или к--л. другим способом определить свойство объекта. Ш. и. является более общим понятием, чем единица физической величины, отсутствующая в нек-рых видах измерений. Ш. и. необходимы как для количественных (длина, темп-pa), так и для качественных (цвет) проявлений свойств объектов (тел, веществ, явлений, процессов). Проявления свойства образуют множество, элементы к-рого находятся в опре-дел. логич. отношениях между собой, т. е. являются т. н. системой с отношениями. Имеются в виду отношения типа "эквивалентность" (равенство), "больше", "меньше", возможность "суммирования" элементов или "деления" одного на другой. Ш. и. получается гомоморфным отображением множества элементов такой системы с отношениями на множество чисел или, в более общем случае,- на знаковую систему с аналогичными логич. отношениями. Такими знаковыми системами, напр., являются: множество обозначений (названий) цветов, совокупность классификац. символов или понятий, множество названий состояний объекта, множество баллов оценки состояний объекта и т. п. При таком отображении используется модель объекта, достаточно адекватно (для решения измерит.задач) описывающая логич. структуру рассматриваемого свойства этого объекта.

В соответствии с логич. структурой свойств в теории измерений принято в основном различать 5 типов Ш. и.: шкалы наименований, порядка, разностей (интервалов), отношений и абс. шкалы (см. табл.).

Шкала наименований характеризуется только отношением эквивалентности к--л. качественного проявления свойства. Пример такой Ш. и.- классификация (оценка) цвета объекта по наименованиям (красный, белый, сине-зелёный и т. д.), опирающаяся на стандартные атласы цветов (в атласах цвета могут обозначаться усл. номерами). Измерения выполняются путём сравнения при опре-дел. освещении образцов цвета из атласа с исследуемым цветом и установления их эквивалентности.

Шкала порядка описывает свойства, для к-рых имеют смысл не только отношение эквивалентности, но и отношение порядка по возрастанию или убыванию количественного проявления свойства. Характерный пример шкал порядка - шкалы чисел твёрдости тел, шкалы баллов землетрясений, шкалы баллов ветра и т. д. Втакого рода шкалах в принципе нет возможности введения единицы измерений, также не имеют смысла суждения, во сколько раз больше или меньше проявления конкретных свойств. Разл. варианты шкал порядка для одного и того же свойства связаны между собой монотонными зависимостями. В шкалах порядка может быть (иметь смысл) нуль или его может не быть. Так, шкалы твёрдости начинаются с не-к-рого ненулевого значения, сейсмич. шкала начинается с одного балла, а шкала Бофорта для силыветра - с нулевого значения.

 

Шкала разностей (интервалов) отличается от шкалы порядка тем, что для описываемого ею свойства имеют смысл не только отношения эквивалентности и порядка, но и пропорциональности или суммирования интервалов (разностей) между разл. количественными проявлениями свойства. Характерный пример - шкалы времени; интервалы времени можно суммировать или вычитать, складывать же даты к--л. событий бессмысленно. Шкалы разностей имеют усл. нуль, опирающийся на к--л. репер (напр., шкала Цельсия, см. Температурная шкала).

Шкала отношений описывает свойства, ко множеству количественных проявлений к-рых применимы отношения эквивалентности, порядка, пропорциональности или суммирования (а следовательно, и вычитания, и умножения). В шкале отношений существует естеств. критерий нулевого количественного проявления свойства, т. е. нуль имеет не усл. значение, а вполне определ. физ. смысл. Примеры шкал отношений - шкала массы, термодина-мич. температурная шкала.

Абсолютные шкалы обладают всеми признаками шкал отношений, но дополнительно в них существует естественное однозначное определение единицы измерения. Такие Ш и. соответствуют относит. величинам - отношениям одноимённых физ. величин, описываемых шкалами отношений. К таким величинам относятся коэф. усиления, добротность колебат. системы, коэф. ослабления и т. п. Среди абс. шкал выделяются ограниченные по диапазону шкалы, значения к-рых находятся в пределах от 0 до 1. Они характерны для кпд, амплитудной модуляции и т. п. величин.

 

1.5 Качество измерений, показатели качества измерений

 

Под качеством измерений понимают совокупность свойств, обусловливающих получение результатов с требуемыми точностными характеристиками и в необходимом виде.

Качество измерений характеризуется такими показателями, как точность, правильность, достоверность, сходимость и воспроизводимость результатов.

Точность измерения – качество измерения, отражающее близость его результата к истинному значению измеряемой величины. Количественно точность может быть выражена величиной, обратной относительной погрешности, взятой по модулю.

Правильность измерений – это характеристика качества измерений, отражающая близость к нулю систематической погрешности результатов измерений.

Достоверность измерений определяется степенью доверия к результату измерения и характеризуется вероятностью того, что истинное значение измеряемой величины находится в указанных пределах.

Сходимость результата измерений – характеристика качества измерений, отражающая близость друг к другу результатов измерений одной и той же величины, выполняемых повторно одними и теми же методами т средствами измерений и в одних и тех же условиях.

Воспроизводимость результатов измерений – характеристика качества измерений, отражающая близость друг к другу результатов измерений одной и той же величины, полученных в разных местах, разными методами и средствами измерений, разными операторами, но приведенных к одним и тем же условиям.

 

1.6 Основные этапы измерений

 

Измерение - последовательность сложных и разнородных действий, состоящая из ряда этапов.

Первым этапом любого измерения является постановка измерительной задачи. Он включает в себя:

1. сбор данных об условиях измерения и исследуемой физической величине, т.е. накопление априорной информации об объекте измерения с последующим ее анализом;

2. формирование модели объекта и определение измеряемой величины, что является наиболее важным, особенно при решении сложных измерительных задач. Измеряемая величина определяется с помощью принятой модели как ее параметр или характеристика. В простых случаях, т.е. при измерениях невысокой точности, модель объекта в явном виде не выделяется, а пороговое несоответствие пренебрежимо мало;

3. постановку измерительной задачи на основе принятой модели объекта измерения;

4. выбор конкретных величин, посредством которых будет находиться значение измеряемой величины;

5. формулирование уравнения измерения.

вторым этапом процесса измерения является планирование измерения. В общем случае оно выполняется в следующей последовательности:

1выбор методов измерений непосредственно измеряемых величин и возможных типов средств измерений;

2априорная оценка погрешности измерения;

3определение требований к метрологическим характеристикам средств измерений и условиям измерений;

4выбор средств измерений в соответствии с указанными требованиями;

5выбор параметров измерительной процедуры (числа наблюдений для каждой измеряемой величины, моментов времени и точек выполнения наблюдений;

6подготовка средств измерений к выполнению экспериментальных операций;

7обеспечение требуемых условий измерений или создание возможности их контроля.

Третий, главный этап измерения - измерительный эксперимент. В узком смысле он является отдельным измерением. В общем случае последовательность действий во время этого этапа следующая:

Последний этап измерения - обработка экспериментальных данных. В общем случае она осуществляется в последовательности, которая отражает логику решения измерительной задачи

Некоторые пункты данной последовательности могут отсутствовать при реализации конкретной процедуры обработки результатов измерений.

Задача обработки данных подчинена цели измерения и после выбора средства измерений однозначно вытекает из измерительной задачи и, следовательно, является вторичной.

Перечисленные выше этапы существенно различаются по выполняемым операциям и их трудоемкости. В конкретных случаях соотношение и значимость каждого из этапов заметно варьирует. Для многих технических измерений вся процедура измерения сводится к экспериментальному этапу, поскольку анализ и планирование, включая априорное оценивание погрешности, выбор нужных методов и средств измерений осуществляются предварительно, а обработка данных измерений, как правило, минимизируется.

Выделение этапов измерения имеет непосредственное практическое значение, а именно способствует своевременному осознанному выполнению всех действий и оптимальной реализации измерений. Это в свою очередь позволяет избежать серьезных методических ошибок, связанных с переносом проблем одного этапа на другой.

 

1.7 Классификация измерений

 

Измерение – это нахождение значения физической величиныопытным путем с помощью специальных технических средств. Измерения обычно осуществляются на естественных или созданных человеком объектах, которые называют объектами измерений.

Объект измерения – это сложное явление или процесс, характеризующийся множеством отдельных физических величин (параметров объекта), каждая из которых может быть измерена в отдельности, но в реальных условиях действует на измерительное устройство совместно со всеми остальными параметрами.

Физическую величину, которая выбрана для измерения, называют измеряемой величиной.

Все измеряемые физические величины можно разделить на две группы:

· Непосредственно измеряемые, которые могут быть воспроизведены с заданными размерами и сравнимы с подобными, например длина, масса, время;

· Преобразуемые с заданной точностью в непосредственно измеряемые величины, например температура, плотность.

 

1. По характеристике точности измерения делятся на равноточные и неравноточные.

Равноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерений (СИ), обладающих одинаковой точностью, в идентичных исходных условиях.

Неравноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерения, обладающих разной точностью, и (или) в различных исходных условиях.

2. По количеству измерений измерения делятся на однократные и многократные.

3. По типу изменения величины измерения делятся на статические и динамические.

Статические измерения – это измерения постоянной, неизменной физической величины.

Динамические измерения – это измерения изменяющейся, непостоянной физической величины.

4. По предназначению измерения делятся на технические и метрологические.

Технические измерения – это измерения, выполняемые техническими средствами измерений.

Метрологические измерения – это измерения, выполняемые с использованием эталонов.

5. По способу представления результата измерения делятся на абсолютные и относительные.

Абсолютные измерения – это измерения, которые выполняются посредством прямого, непосредственного измерения основной величины и (или) применения физической константы. Относительные измерения – это измерения, при которых вычисляется отношение однородных величин, причем числитель является сравниваемой величиной, а знаменатель – базой сравнения (единицей).

6. По методам получения результатов измерения делятся на прямые, косвенные, совокупные и совместные.

Прямые измерения – это измерения, выполняемые при помощи мер, т. е. измеряемая величина сопоставляется непосредственно с ее мерой. Примером прямых измерений является измерение величины угла (мера – транспортир).

Косвенные измерения – это измерения, при которых значение измеряемой величины вычисляется при помощи значений, полученных посредством прямых измерений.

Совокупные измерения – это измерения, результатом которых является решение некоторой системы уравнений. Совместные измерения – это измерения, в ходе которых измеряется минимум две неоднородные физические величины с целью установления существующей между ними зависимости.

 

1.8 Испытания, контроль и диагностирование

 

Испытанием называется экспериментальное определение количественных и (или) качественных характеристик свойств объекта испытаний как результата воздействия на него при его функционировании, а также моделировании объекта и (или) воздействий (ГОСТ 16504-91). Экспериментальное определение характеристик свойств объекта при испытаниях может проводиться путем использования измерений, оценивания и контроля. Объектом испытаний является продукция или процессы ее производства и функционирования. В зависимости от вида продукции и программы испытаний объектом может быть как единичное изделие, так и их партия. Объектом испытания может также быть макет или модель изделия. Важнейшими признаками любых испытаний являются:1 принятие на основе их результатов определенных решении по объекту испытаний, например о его годности или забраковке, о возможности предъявления на следующие испытания и т.д.;2 задание требуемых реальных или моделируемых условий испытаний. Под условиями испытаний понимается совокупность воздействующих факторов и (или) режимов функционирования объекта при испытаниях. В нормативно-технических документах на испытания конкретных объектов должны быть определены нормальные условия испытаний.

В зависимости от вида испытаний готовой продукции их подразделяют на квалификационные, приемосдаточные периодические и типовые. Целью испытаний следует считать нахождение истинного значения параметра, определенного не при тех реальных условиях, в которых он фактически может находится в ходе испытаний, а в заданных номинальных условиях испытания. Реальные условия испытаний практически всегда отличаются от номинальных, поскольку установить параметры условий испытаний абсолютно точно невозможно. Следовательно, результат испытания всегда имеет погрешность, возникающую не только из-за погрешности определения искомой характеристики, но и из-за неточного установления номинальных условий испытания. Результатом испытаний называется оценка характеристик свойств объекта, установления соответствия объекта заданным требованиям, данные анализа качества функционирования объекта в процессе испытаний. Результат испытаний характеризуется точностью — свойством испытаний, описывающим близость их результатов к действительным значениям характеристик объекта в определенных условиях испытаний.

Контроль — это процесс определения соответствия значения параметра изделия установленным требованиям или нормам. Сущность всякого контроля состоит в проведении двух основных этапов. На первом из них получают информацию о фактическом состоянии некоторого объекта, о признаках и показателях его свойств. Эта информация называется первичной. На втором — первичная информация сопоставляется с заранее установленными требованиями, нормами, критериями. При этом выявляется соответствие или несоответствие фактических данных требуемым.

Контроль состоит из ряда элементарных действий: измерительного преобразования контролируемой величины; операции воспроизведения уставок контроля; операции сравнения; определения результата контроля. Контроль может быть классифицирован по ряду признаков

В зависимости от числа контролируемых параметров он подразделяется на однопараметровый, при котором состояние объекта определяется по размеру одного параметра, и многопараметровый, при котором состояние объекта определяется размерами многих параметров.Поформе сравниваемых сигналов контроль подразделяется на аналоговый, при котором сравнению подвергаются аналоговые сигналы, и цифровой, при котором сравниваются цифровые сигналы.В зависимости от вида воздействия на объект контроль подразделяется на пассивный, при котором воздействие на объект не производится, и активный, при котором воздействие на объект осуществляется посредством специального генератора тестовых сигналов.В практике большое распространение получил так называемый допусковый контроль, суть которого состоит в определении путем измерения или испытания значения контролируемого параметра объекта и сравнение полученного результата с заданными граничными допустимыми значениями. Частным случаем допускового контроля является поверка средств измерений, в процессе которой исследуется попадание погрешностей средства измерений в допускаемые пределы.

Диагностирование системы – это процесс распознавания состояния элементов этой системы в данный момент времени. По результатам диагностирования можно прогнозировать состояние элементов системы при дальнейшей ее эксплуатации.

1.9 Системы физических величин и их единиц. Международная система единиц СИ

Многообразие единиц физических величин на определенной ступени развития общества стало тормозить экономические, торговые и научные связи. Даже отдельные государства и их административные области для одних и тех же величин вводили свои единицы. В разных областях науки и техники появлялись свои, специфические единицы, удобные только именно для этой отрасли.
В связи с этим возникла тенденция к унификации единиц физических величин, необходимость в системах единиц, которые охватывали бы единицы величин как можно больших разделов науки и техники. Ниже приводятся основные понятия, связанные с единицами физических величин и их системами.
Система единиц физических величин — совокупность основных и производных единиц физических величин, образованная в соответствии с принципами для заданной системы физических величин. Например, международная система единиц (СИ).
Основная единица системы — единица основной физической величины в данной системе единиц.Основные единицы могут выбираться произвольно, поэтому для одной и той же системы величин может быть образовано несколько систем единиц.
Производная единица системы — единица производной физической величины системы единиц, образованная в соответствии уравнением, связывающим ее с основными единицами или с основными и уже определенными производными.
Системная и внесистемная единицы – единицы, входящие и не входящие в принятые системы единиц. Например, единицы, не входящие в СИ, разделяют на следующие группы:

· допускаемые к применению наравне с единицами СИ без ограничения срока;

· допускаемые к применению единицы относительных и логарифмических величин;

· единицы, временно допускаемые к применению до принятия по ним соответствующих международных решений;

· внесистемные единицы, применение которых в новых разработках не допускается.

Когерентная производная единица – единица физической величины, связанная с другими единицами системы единиц уравнением, в котором числовой коэффициент принят равным 1.
Когерентная система единиц физических величин – система единиц, состоящая из основных единиц и когерентных производных единиц.
Когерентные производные единицы образуются с помощью простейших уравнений между величинами, где числовые коэффициенты равны 1. Преимущества когерентной системы единиц - простота выполнения расчетов и использования системы.
Кратная и дольная единица величины - это единица, в целое число раз большая или меньшая системной единицы. Например, кратная - 1 километр, дольная - 1 см.

 

----------

В 1960 г. ХI Генеральная конференция по мерам и весам утвердила Международную систему единиц физических величин (русское обозначение СИ, международное SI) на основе шести основных единиц. Было принято решение:

· присвоить системе, основанной на шести основных единицах,

наименование «Международная система единиц»;

· установить международное сокращение для наименования системы - SI;

· ввести таблицу приставок для образования кратных и дольных

единиц;

· образовать 27 производных единиц, указав, что иогут быть

добавлены и другие производные единицы.
В 1971 к СИ была добавлена седьмая основная единица - количества вещества (моль).
При построении СИ исходили из следующих основных принципов:

· система базируется на основных единицах, которые являются независимыми друг от друга;

· производные единицы образуются по простейшим уравнениям связи и для величины каждого вида устанавливается только одна единица СИ;

· система является когерентной;

· допускаются наряду с единицами СИ широко используемые на практике внесистемные единицы;

· в систему входят десятичные кратные и дольные единицы.

Преимущества СИ:

· универсальность, т.к. она охватывает все области измерений;

· унификация единиц для всех видов измерений – применение одной единицы для данной физической величины, например, для давления, работы, энергии;

· единицы СИ по своему размеру удобны для практического применения;

· переход на нее повышает уровень точности измерений, т.к. основные единицы этой системы могут быть воспроизведены более точно, чем единицы других систем;

· это единая международная система и ее единицы распространены.

В СССР Международная система (СИ) была введена в действие ГОСТ 8.417-81. По мере дальнейшего развития СИ из нее был исключен класс дополнительных единиц, введено новое определение метра и введен ряд других изменений. В настоящее время в РФ действует межгосударственный стандарт ГОСТ 8.417-2002, который устанавливает единицы физических величин, применяемых в стране. В стандарте указано, что подлежат обязательному применению единицы СИ, а также десятичные кратные и дольные этих единиц.
Кроме того, допускается применять некоторые единицы, не входящие в СИ, и их дольные и кратные единицы. В стандарте указаны также внесистемные единицы и единицы относительных величин.Основные единицы СИ представлены в таблице.

Величина Единица
Наименование Размерность Наименование Обозначение
русское между-народн.
Длина L метр м m
Масса M килограмм кг kg
Время T секунда с s
Электрический ток I ампер А A
Термодинамическая температура   кельвин К K
Количество вещества N моль моль mol
Сила света J кандела кд cd

Производные единицы СИ образуются по правилам образования когерентных производных единиц (пример см. выше). Приведены примеры таких единиц и производных единиц, имеющих специальные наименования и обозначения. 21 производной единице дали наименования и обозначения по именам ученых, например, герц, ньютон, паскаль, беккерель.
В отдельном разделе стандарта приведены единицы, не входящие в СИ. К ним относятся:

· Внесистемные единицы, допускаемые к применению наравне с СИ из-за их практической важности. Они разделены на области применения. Например, во всех областях применяются единицы тонна, час, минута, сутки, литр; в оптике - диоптрия, в физике - электрон-вольт и т.п.

· Некоторые относительные и логарифмические величины и их единицы. Например, процент, промилле, бел.

· Внесистемные единицы, временно допускаемые к применению. Например, морская миля, карат (0,2 г), узел, бар.

В отдельном разделе приведены правила написания обозначений единиц, использования обозначений единиц в заголовках граф таблиц и т.п.
В приложениях к стандарту даны правила образования когерентных производных единиц СИ,таблица соотношений некоторых внесистемных единиц с единицами СИ и рекомендации по выбору десятичных кратных и дольных единиц.

 

1.10 Системные и внесистемные единицы ФВ. Кратные и дольные единицы ФВ

 

Системная и внесистемная единицы – единицы, входящие и не входящие в принятые системы единиц.

Даже самая универсальная система единиц ФВ не может обеспечить нужды всех потребителей. Отсюда очевидна необходимость стандартизации единиц, не входящих в Международную систему единиц ФВ. В стандарт включают единицы, получившие широкое распространение и применяемые по традиции (тонна, гектар, карат) и единицы, применяемые в конкретных областях и обеспечивающие определенные удобства (градус Цельсия, морская миля).

В дополнение к единицам SI (системным), в узаконивающий единицы стандарт включены «внесистемные единицы».

Термин «внесистемная единица» имеет два разных истолкования:

– единица, не входящая в данную систему единиц ФВ;

– единица, не входящая ни в какую из систем единиц ФВ.

Примеры «внесистемных единиц», не входящих в SI, но являющихся заимствованными из других систем, допущенных стандартом к применению наряду с единицами SI:

– тонна (единица системы МТС, 1 т = 1 000 кг = 1 Мг);

– минута, час, сутки и др. широко употребляемые единицы времени;

– угловые градус, минута, секунда;

– морская миля, кабельтов, узел;

– атмосфера (единица давления в 1 кгс на площадь 1 см2).

«Внесистемность» таких единиц времени, как минута, час, сутки (кратных основной единице SI – секунде) связана с кратностью, не соответствующей принятой в SI. Для минут и часа кратность принята из шестидесятиричной системы исчисления, а для суток – из двойной двенадцатиричной. Для приведенных угловых единиц также принята шестидесятиричная кратность, но эти углы вовсе системно не связаны с единицей SI – радианом. Морская миля, кабельтов и узел представляют собой самостоятельную систему единиц длины и скорости, используемых в навигации. Их преимуществом по сравнению с единицами SI является согласованность с дугой большого круга Земли, не реализованной при первичном определении метра из-за недостаточной точности измерений.

Атмосфера – единица давления из системы МКГСС, которая соответствует давлению, производимому силой 1 кгс на площадь 1 см2, и названа «атмосферой» ввиду близости ее размера и среднего давления атмосферного воздуха на уровне моря.

К единицам, не входящим ни в какую из систем единиц ФВ, а также не образующим самостоятельные локальные системы, можно отнести такие единицы как ангстрем, икс-единица, световой год, парсек (единицы длины); карат (единица массы); миллиметр ртутного столба, миллиметр водяного столба (единицы давления). Сюда же можно отнести такие устаревшие единицы, как «локоть», «аршин», «перестрел» и т.п.

 

Кратная и дольная единица величины - это единица, в целое число раз большая или меньшая системной единицы. Например, кратная - 1 километр, дольная - 1 см.

В 1875 г. была подписана Метрическая конвенция с целью обеспечения международного единства мер. В ее основу положены единицы длины и массы, а для образования кратных и дольных единиц использовалась десятичная система. Таким образом, была установлена метрическая система мер.

Выбор кратной или дольной единицы от единицы СИ диктуется прежде всего уд



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-01-08 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: