Назначение и принцип действия трансформатора.




 

Трансформатором называют статическое электромагнитное устройство, имеющее две или большее число индуктивно связанных обмоток и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем переменного тока в одну или несколько других систем переменного тока.

С помощью трансформаторов повышается или понижается напряжение, изменяется число фаз, а в некоторых случаях преобразуется частота переменного тока. Возможность передачи электрических сигналов от одной обмотки к другой посредством взаимоиндукции была открыта М. Фарадеем в 1831 г.; при изменении тока в одной из обмоток, намотанной на стальной магнитопровод, в другой обмотке индуцировалась ЭДС Однако первый практически работающий трансформатор создал известный изобретатель П. Н. Яблочков в содружестве с И. Ф. Усагиным в 1876 г. Это был двухобмоточный трансформатор с разомкнутым магнитопроводом.

В дальнейшем несколько конструкций однофазных трансформаторов сзамкнутым магнитопроводом были созданы венгерскими электротехниками О. Блати, М. Дери и К. Циперноеским. Для развития трансформаторостроения и вообще электромашиностроения большое значение имели работы проф. А. Г. Столетова по исследованию магнитных свойств стали и расчету магнитных цепей.

Важная роль в развитии электротехники принадлежит М. О. Доливо-Добровольскому. Он разработал основы теории многофазных и, в частности, трехфазных переменных токов и создал первые трехфазные электрические машины и трансформаторы. Трехфазный трансформатор современной формы с параллельными стержнями, расположенными в одной плоскости, был изобретен им в 1891 г. С тех пор происходило дальнейшее конструктивное усовершенствование трансформаторов, уменьшалась их масса и габариты, повышалась экономичность. Основные положения теории трансформаторов были разработаны в трудах Е. Арнольда и М. Видмара.

В развитии теории трансформаторов и совершенствовании их конструкции большое значение имели работы советских ученых В. В. Корицкого, Л. М. Пиотровского, Г. Н. Петрова, А. В. Сапожникова, А. В. Трамбицкого и др.

Трансформаторы широко используют для следующих целей.

1. Для передачи и распределения электрической энергии. Обычно на электростанциях генераторы переменного тока вырабатывают электрическую энергию при напряжении 6—24 кВ. Передавать же электроэнергию на дальние расстояния выгодно при больших напряжениях, поэтому на каждой электростанции устанавливают трансформаторы, повышающие напряжение.

В настоящее время для высоковольтных линий электропередачи в СССР применяют силовые трансформаторы с масляным охлаждением напряжением 330, 500 и 750 кВ, мощностью до 1200—1600 MB-А. В связи со строительством дальних линий электропередачи Экибастуз — Центр, Экибастуз — Урал и других напряжением 1150 кВ переменного тока наша электро­промышленность создала трансформаторные группы, состоящие из трех однофазных трансформаторов мощностью 667 MB-А, а для линий 1500 В постоянного тока — двенадцатифазные преобразовательные блоки с четырехобмоточными трансформаторами общей мощностью 1500 MB-А. КПД таких трансформаторов составляет 98 — 99% и выше.

Для перспективных линий электропередачи переменного тока напряжением 1800—2000 кВ и постоянного тока напряжением 3000 кВ разрабатывают трансформаторы мощностью 1320 MB-А на одну фазу.

Электрическая энергия распределяется между промышленными предприятиями и населенными пунктами, в городах и сельских местностях, а также внутри промышленных предприятий по воздушным и кабельным линиям при напряжении 220, 110, 35, 20, 10 и 6 кВ. Следовательно, во всех узлах распределительных сетей должны быть установлены трансформаторы, понижающие напряжение. Кроме того, понижающие трансформаторы следует устанавливать в пунктах потребления электроэнергии, так как большинство электрических потребителей переменного тока работает при напряжениях 220, 380 и 660 В. Таким образом, электрическая энергия при передаче от электрических станций к потребителям подвергается в трансформаторах многократному преобразованию (3 — 5 раз). При­меняемые для этих целей трансформаторы могут быть одно-и трехфазными, двух- и трехобмоточными.

2. Для обеспечения нужной схемы включения вентилей в преобразовательных устройствах и согласования напряжений на входе и выходе преобразователя. В вентильных преобра зователях, выпрямляющих переменный ток или преобразующих его из постоянного в переменный (инверторы), отношение напряжений на входе и выходе зависит от схемы включения вентилей. Поэтому если на вход преобразователя подается стандартное напряжение, то на выходе получается нестандартное. Для устранения этого недостатка вентильные преобразователи, как правило, снабжают трансформаторами, обеспечивающими стандартное выходное напряжение при принятой схеме включения вентилей. Кроме того, ряд схем включения вентилей требует обязательного применения трансформатора. Трансформаторы, применяемые для этой цели, называют преобразовательными. Их мощность достигает тысяч киловольт-ампер, напряжение 110 кВ; они работают при частоте 50 Гц и более. Рассматриваемые трансформаторы выполняют одно-, трех- и многофазными с регулированием выходного напряжения в широких пределах и без регулирования.

В последнее время для возбуждения мощных турбо-и гидрогенераторов, электропривода и других целей все шире начинают применять трансформаторы с естественным воздушным охлаждением напряжением 3 — 24 кВ и мощностью 133-6300 кВ-А. Благодаря использованию в этих трансформаторах новой теплостойкой изоляции удается повысить их нагрузочную способность и в 1,3 — 1,5 разасократить, массогабаритные показатели по сравнению с применявшимися ранее трансформаторами с масляным охлаждением.

3. Для различных технологических целей: сварки (сварочные трансформаторы), питания электротермических установок (электропечные трансформаторы) и др. Мощность их достигает десятков тысяч киловольт-ампер при напряжении до 10 кВ; они работают обычно при частоте 50 Гц.

4. Для питания различных цепей радио- и телевизионной аппаратуры; устройств связи, автоматики в телемеханики, электробытовых приборов; для разделения электрических цепей различных элементов этих устройств; для согласования напряжений и т. п. Трансформаторы, используемые в этих устройствах, обычно имеют малую мощность (от нескольких вольт-ампер до нескольких киловольтампер), невысокое напряжение, работают при частоте 50 Гц и более. Их выполняют двух-, трех- и многообмоточными; условия работы, предъявляемые к ним требования и принципы проектирования весьма специфичны.

5. Для включения электроизмерительных приборов и некоторых аппаратов, например реле, в электрические цепи высокого напряжения или в цепи, по которым проходят большие токи, с целью расширения пределов измерения и обеспечения электробезопасности. Трансформаторы, применяемые для этой цели, называют измерительными. Они имеют сравнительно небольшую мощность, определяемую мощностью, потребляемой электроизмерительными приборами, реле и др.

Трансформаторы, перечисленные в п. 1, 2, 3 и частично в п. 4, предназначенные для преобразования электрической энергии в сетях энергосистем и потребителей электрической энергии, называют силовыми. Для режима их работы характерны неизменная частота переменного тока и очень малые отклонения первичного и вторичного напряжений от номинальных значений.

Силовые трансформаторы, выпускаемые отечественными заводами, разделены на несколько групп (габаритов) от I до VIII. Например, трансформаторы мощностью до 100 кВ•А включительно относят к габариту I, от 160 до 630 кВ • А — к габариту II, от 1000 до 6300 кВ • А — к габариту III и т. п.

Электромагнитная схема однофазного двухобмоточного трансформатора состоит из двух обмоток (рис. 2.1), разме­щенных на замкнутом магнитопроводе, который выполнен из ферромагнитного материала. Применение ферромагнитного магнитопровода позволяет усилить электромагнитную связь между обмотками, т. е. уменьшить магнитное сопротивление контура, по которому проходит магнитный поток машины. Первичную обмотку 1 подключают к источнику переменного тока — электрической сети с напряжением u1. Ко вторичной обмотке 2 присоединяют сопротивление нагрузки ZH.

Обмотку более высокого напряжения называют обмоткой высшего напряжения (ВН), а низкого напряжения — обмоткой низшего напряжения (НН). Начала и концы обмотки ВН обозначают буквами А и X; обмотки НН — буквами а и х.

При подключении к сети в первичной обмотке возникает переменный ток i1, который создает переменный магнитный поток Ф, замыкающийся по магнитопроводу. Поток Ф индуцирует в обеих обмотках переменные ЭДС — е1 и е2, пропорциональные, согласно закону Максвелла, числам витков w1 и w 2 соответствующей обмотки и скорости изменения потока d Ф/ dt.

Рис. 2.1. Электромагнитная система однофазного трансфор­матора: 1,2 — первичная и вторичная обмот­ки; 3 — магнитопровод

Таким образом, мгновенные значения ЭДС, индуцированные в каждой обмотке,

е1 = - w1 d Ф/dt; е2= -w2dФ/dt.

Следовательно, отношение мгновенных и действующих ЭДС в обмотках определяется выражением

E1/E2 = e 1/ e2 = w 1/ w 2. (2.1)

Если пренебречь падениями напряжения в обмотках тран­сформатора, которые обычно не превышают 3 — 5% от номи­нальных значений напряжений U 1 и U 2, и считать E 1 ≈U l и Е 2U 2, то получим

U 1/ U 2w 1 /w 2. (2.2)

Следовательно, подбирая соответствующим образом числа витков обмоток, при заданном напряжении U 1 можно получить желаемое напряжение U 2. Если необходимо повысить вторичное напряжение, то число витков w2берут больше числа w1; такой трансформатор называют повышающим. Если требуется уменьшить напряжение U 2, то число витков w2 берут мень­шим w1; такой трансформатор называют понижающим,

Отношение ЭДС Е ВН обмотки высшего напряжения к ЭДС Е НН обмотки низшего напряжения (или отношение их чисел витков) называют коэффициентом трансформации

k = Е ВН/ Е НН = w ВН/ w НН (2.3)

Коэффициент k всегда больше единицы.

В системах передачи и распределения энергии в ряде слу­чаев применяют трехобмоточные трансформаторы, а в устрой­ствах радиоэлектроники и автоматики — многообмоточные трансформаторы. В таких трансформаторах на магнитопроводе размещают три или большее число изолированных друг от друга обмоток, что дает возможность при питании одной из обмоток получать два или большее число различных напряжений (U 2, U 3, U 4 и т.д.) для электроснабжения двух или большего числа групп потребителей. В трехобмоточных силовых трансформаторах различают обмотки высшего, низшего и среднего (СН) напряжений.

В трансформаторе преобразуются только напряжения и токи. Мощность же остается приблизительно постоянной (она несколько уменьшается из-за внутренних потерь энергии в трансформаторе). Следовательно,

I 1 /I 2U 2 /U 1w 2/ w 1. (2.4)

При увеличении вторичного напряжения трансформатора в k раз по сравнению с первичным, ток i 2во вторичной обмотке соответственно уменьшается в k раз.

Трансформатор может работать только в цепях переменного тока. Если первичную обмотку трансформатора под­ключить к источнику постоянного тока, то в его магнито-проводе образуется магнитный поток, постоянный во времени по величине и направлению. Поэтому в первичной и вторичной обмотках в установившемся режиме не индуцируются ЭДС, а следовательно, не передается электрическая энергия из первичной цепи во вторичную. Такой режим опасен для трансформатора, так как из-за отсутствия ЭДС E 1 первич­ной обмотке ток I 1 = U 1 R 1 весьма большой.

Важным свойством трансформатора, используемым в устройствах автоматики и радиоэлектроники, является способность его преобразовывать нагрузочное сопротивление. Если к источнику переменного тока подключить сопротивление R через трансформатор с коэффициентом трансформации к, то для цепи источника

R' = P 1 /I 12P 2 /I 12 ≈ I 22 R/I 12k2R (2.5)

где Р 1— мощность, потребляемая трансформатором от источ­ника переменного тока, Вт;
Р 2 = I22 RP 1— мощность, по­требляемая сопротивлением R от трансформатора.

Таким образом, трансформатор изменяет значение сопро­тивления R в k 2 раз. Это свойство широко используют при разработке различных электрических схем для согласования сопротивлений нагрузки с внутренним сопротивлением источ­ников электрической энергии.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: