Область применения и достоинства обработки




Технологическое применение плазма нашла в процессах, требующих высокотемпературного концентрированного нагрева (металлургия, сварочные процессы). В промышленности широко используется плазменная резка различных тугоплавких металлов, оксидов, карбидов, нитридов.

При плазменной обработке изменяется форма, размеры, структура обрабатываемого материала или состояние его поверхности. Плазменная обработка включает: разделительную и поверхностную резку, нанесение покрытий, наплавку, сварку, разрушение горных пород (плазменное бурение).

Плазменный нагрев. Чаще всего используется для плазменно-механической обработки жаропрочных сталей и сплавов на основе молибдена, вольфрама и других материалов, при обработке которых при обычной температуре образуются микротрещины. Производится нагрев обрабатываемой детали с помощью плазмотрона, устанавливаемого непосредственно перед резцом. При нагреве детали ее пластичность увеличивается, а прочность снижается. Это позволяет также увеличить в несколько раз скорость обработки детали и уменьшить износ резцов.

Плавление вещества. Широко используется в промышленности из-за простоты и высокой стабильности процесса. Наиболее распространенной является плавка в водоохлаждаемый кристаллизатор [8]. Таким образом получают сложнолегированные сплавы (например, инструментальные сплавы). Соответствующий подбор плазмообразующего газа позволяет получать небольшое содержание в сплаве оксидов и кислорода, что увеличивает пластичность металла и улучшает его механические свойства. Применение разбрызгивания расплавленного металла и его быстрого охлаждения позволяет получать малоразмерные капли, которые в дальнейшем используются в порошковой металлургии, для наплавки и т.д.

Сварка. Применение плазмотронов для сварки позволяет получить большую глубину проплавления и меньшую ширину шва, чем при использовании обычной свободно горящей дуги. Качество сварного шва получается выше, а технологический процесс идет с большой скоростью. Для тонколистовых материалов (фольга, сильфонно-мембранные узлы) и радиодеталей широко используется микроплазменная сварка при небольших токах (0,1-10)А.

Плазменной сваркой за один проход сваривают детали толщиной до 20 мм, что дает возможность существенно повысить производительность процесса, уменьшить возникающие при сварке деформации.

Плазменная наплавка. Применяется для нанесения на поверхность деталей материалов с особыми свойствами (высокой твердостью, износостойкостью, термостойкостью). Для защиты обрабатываемой поверхности от воздействия атмосферных газов в качестве плазмообразующих газов обычно применяют аргон и водород. Наплавку производят плазмотронами косвенного действия (плазменной струей), позволяющими регулировать глубину проплавления основного металла посредством изменения расстояния между плазмотроном и обрабатываемой деталью. Плазменная наплавка применяется для изготовления режущих инструментов из обычных углеродистых сталей с наплавкой режущих кромок из инструментальных сталей. Так как теплопроводность углеродистых сталей выше, чем у инструментальных, то и отвод тепла с наплавленного резца остается выше, что повышает стойкость инструмента.

В станкоинструментальной промышленности наплавкой упрочняют отдельные детали станков. Использование наплавки позволяет экономить дефицитные, и дорогостоящие инструментальные стали, изготовляя инструменты из обычных углеродистых сталей с наплавкой рабочих лезвий. Масса наплавленной инструментальной стали обычно не превышает 4…5% общей массы инструмента, а стойкость инструмента повышается благодаря лучшим условиям теплоотвода от режущей кромки.

С помощью плазменной наплавки в ремонтных целях восстанавливают дорогостоящие узлы и детали (штампы, пресс-формы, валки и т. д.) металлообрабатывающего оборудования.

Плазменное напыление. При плазменном напылении наносимый материал нагревается внутри плазмотрона, а затем осаждается на подложку, образуя на ней слой () м. Для улучшения сцепления напыляемых частиц с подложкой, проводится ее предварительный подогрев и создаются промежуточные химически активные покрытия. Напыление производится с целью улучшения коррозионной стойкости (для напыления применяется никель, кобальт), жаростойкости (оксиды алюминия и циркония), в качестве защитных покрытий часто применяются вольфрам, молибден, ниобий. Прочные поверхностные покрытия получают, используя ионную технологию покрытий с помощью плазменных ускорителей. В этом случае напыляемый материал ионизуют в электрическом разряде внутри плазмотрона, превращая его в плазму, которая с помощью электромагнитного поля ускоряется до значительных энергий по направлению к обрабатываемой поверхности. Добавляя в ионные потоки металла кислород, ацетилен или азот, получают покрытия сложного химического состава – оксиды, карбиды или нитриды. Такие покрытия используются для увеличения срока службы металлорежущего инструмента и штампов [7].

Производительность процесса может достигать несколько килограммов напыляемого материала в час, а плотность напыления составляет обычно 80…90 % от плотности монолитного материала. Если проводится последующая термообработка, плотность напыленного слоя может быть несколько выше. Тонкие (до 0,1 … 0,3 мм) напыленные слои имеют большую плотность и лучшее сцепление с подслоем.

Металлические покрытия из жаростойких металлов и сплавов, нанесенные плазменным напылением, применяются для деталей, работающих при высоких температурах в газовых потоках. Никелевые и кобальтовые напыленные слои повышают коррозионную стойкость конструкций.

Оксидные покрытия отличаются высокой жаростойкостью и сравнительно низким показателем тепло- и электропроводности – их в основном используют в качестве защитных покрытий. Оксиды алюминия я циркония подают в плазменную струю в виде порошков. Напыление повышает стойкость кокилей и изложниц для литья; износостойкость, например, фильер для протягивания молибденовых прутков, при напылении увеличивается в 5…10 раз. Покрытия из оксида алюминия широко применяются в качестве теплостойких электроизоляционных материалов.

Плазменная резка. При плазменной резке происходит локальное расплавление металла в зоне реза и его удаление потоком плазмы [6]. После обработки на поверхности реза остается слой оплавленного металла, толщиной в несколько десятых долей миллиметра. В качестве плазмообразующих газов при резке используют аргон, азот, водород или воздух. Экономически более целесообразно применение воздуха, однако наличие в нем кислорода приводит к разрушению вольфрамового электрода плазмотрона. В воздушных плазмотронах в качестве электродов используются специальные термохимические катоды, содержащие вставку из циркония или гафния. При плазменной резке отсутствует силовой контакт с заготовкой, возможно разрезать заготовки, практически, из любого материала и получать резы сложной конфигурации. Толщина разрезаемых материалов не превышает 25-30 см. При плазменной резке чаще используют плазмотроны прямого действия (больший коэффициент полезного действия). Режим плазменной струи используется для неэлектропроводных материалов и тонких (1-2мм) заготовок.

Параметры обработки – точность и качество поверхности плазменной резкой деталей - определении ГОСТом, в котором выделены четыре показателя: соотвествие заданных параметров вырезаемых деталей или заготовок фактическим размером вырезанных контуров. Предельное отклонение установлены только в зависимости от номинальных размеров деталей без учета свойств разрезаемого металла; неперепендикулярность кромки реза. Нормы неперепендикулярности зависят от толщины разрезаемой заготовки.

В практике существуют различные виды плазменной резки, применяемые каждый в определенной области в зависимости от используемого плазменного газа (см. табл.1).

 

Таблица 1

Плазма с использованием нейтрального или раскисляющего газа. Плазма с использованием кислородосодержащего газа. Плазма с впрыском воды.
Используемыми газами: азот, аргон или смесь аргона и водорода. Обычно применяется для резки цветных металлов и нержавеющей стали. Плазма аргон-водород используется для ручной резки. При этом методе в качестве плазменного газа ис-пользуется сжатый воздух или чистый кислород. Обычно применяется для резки углеродистых марок стали. Плазма сжатый воздух используется для ручной резки. При этом методе резки происходит комбинированный процесс смешивания газа(азота, сжатого воздуха или кислорода) с последующим впрыском воды. Применяется для резки любых электропроводных материалов. Уменьшает количество вредных выбросов. Метод используется только для автоматической резки.

 

Положительные стороны плазменной резки: высокая производительность, т.е. сравнительно более высокая скорость резки; простота в подготовке к работе и запуске; стабильность качественных показателей резки; при необходимости процесс может быть легко автоматизирован или роботизирован; незначительная зона термического воздействия; незначительное или полное отсутствие деформации разрезаемого материала.

Плазменная обработка металлов (резка, сварка, наплавка) по сравнению с дуговой имеет следующие преимущества: высокую производительность (в 4 раза и более); низкую деформируемость обрабатываемого металла (за счет высоких скоростей сварки и резки); меньшее количество отходов при резке металла благодаря получению более узкой щели реза, чем при кислородной резке.

Плазменная обработка металлов должна производиться в специальных помещениях или изолированных участках цеха. Площадь помещения, не занятая оборудованием, должна быть не менее 10 м2 на каждого работающего. Помещения для плазменной обработки должны иметь звукопоглощающую облицовку, рассчитанную на снижение высокочастотного шума

Методы газопламенной обработки чрезвычайно разнообразны: резка, сварка, наплавка, пайка и нагрев металла. В настоящее время быстрое развитие получают смежные ресурсосберегающие процессы плазменной обработки металлов и напыления покрытий, основанные на использовании газового теплоносителя.Эффективному использованию этих процессов способствуют новые прогрессивные оборудование и технология, разработанные и внедренные в производство в последние годы.

Плазменная обработка металлов с каждым днем получает все большее распространение. Об этом свидетельствует ее применение в космическом пространстве и в других экстремальных условиях. Этот процесс также успешно используют на созданных установках Булат для нанесения упрочняющих покрытий нитридом титана режущего инструмента, что значительно повышает его долговечность.

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-01-08 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: