ЭВОЛЮЦИЯ И СТРОЕНИЕ ГАЛАКТИК




Эволюция галактик – процесс очень сложный. В начале галактики содержат много молодых массивных и ярких звезд, со временем от ранних эпох остаются лишь менее массивные и более долго живущие звезды. В результате молодые галактики, по-видимому, являются очень яркими, а затем постепенно с возрастом их яркость уменьшается. Поскольку далекие галактики ярче, чем ожидалось, видимые расстояния до них оказываются заниженными, что в свою очередь дает завышенную плотность галактик. Поэтому Вселенная кажется нам закрытой в большей степени, чем это есть на самом деле. Учет эффектов эволюции галактик повышает оценки расстояний, соответственно, понижая оценки плотности, и приводит к выводу о том, что Вселенная более открыта, чем можно было бы предположить.

Возможно, что самое яркие галактики в далеком прошлом были более тусклыми. Такая возможность вытекает из процесса «пожирания» галактик. Если галактики проглатывали своих более мелких соседей в огромном скоплении, то они должны были бы расти и с течением времени становиться более яркими. В таком случае наши оценки расстояний до далеких галактик оказались бы завышенными. Соответствующая поправка перетягивала бы чашу весов в сторону закрытой модели Вселенной.

Основной характеристикой определенного этапа эволюции галактик является частота звездообразования, а также возраст звезд, их составляющих.

Галактики по своему строению, как показали многочисленные исследования последних десятилетий, имеют сложную структуру и разновидности. Во Вселенной имеется большое число галактик, подобно нашей Галактике, в которую входит Солнечная система. В частности, исследованы спиральные галактики, обладающие дисковой подсистемой со спиральным узором. Ближайшей к Солнечной системе гигантской спиральной галактикой является Туманность Андромеды. Кроме спиральных существуют эллиплитические галактики, по своему строению и звездному скоплению подобные сферической подсистеме нашей Галактики. В них практически нет газопылевого вещества и молодых ярких звезд. Очень часто эллиптические галактики, особенно самые массивные, имеют плотные ядра, которые по своим проявлениям обычно больше и активнее ядер спиральных галактик.

Еще один тип галактик – неправильные. Их массы и светимости в десятки раз меньше, чем у Галактики. Звездный состав их подобен скоплениям в дисках спиральных галактик. Но эти звезды, а также значительные массы газопылевого вещества не образуют регулярной структуры и не обладают выраженным общим вращением. Кроме ярких молодых звезд, в неправильных галактиках имеются еще и звезды старые, менее яркие, подобные звездам сферической подсистемы Галактики, также образующие общий сферический состав. Перечисленные три типа галактик были впервые обнаружены и изучены Э. Хабблом и другими астрономами в 20-30-е гг. XX в. В последние десятилетия стали известны также галактики иных типов, не всегда укладывающиеся в первоначальную классификацию. Это относится в первую очередь к галактикам с активными ядрами и значительным радиоизлучением. В них звездная составляющая не обнаруживается; она либо вообще отсутствует, либо, что более вероятно, имеется, но незаметна на фоне огромной светимости плотного ядра.

ЭВОЛЮЦИЯ ЗВЕЗД

Звезды возникали в ходе эволюции галактик.

Большинство астрономов считают, что это происходило в результате сгущения (конденсации) облаков диффузной материи, которые постепенно формировались внутри галактик. Одна из исходных предпосылок такой гипотезы состоит в том, что, как показывают инструментальные многочисленные наблюдения, «молодые» звезды всегда тесно связаны с газом и пылью. Эти звезды и диффузная материя концентрируются в спиральных ветвях галактик. Местами наиболее интенсивного звездообразования считаются массы холодного межзвездного вещества, которые называются газово-пылевыми комплексами. Наиболее изученный газово-пылевой комплекс нашей Галактики находиться в созвездии Ориона. Силы тяготения сжимают холодное газово-пылевое облако, при этом оно принимает шарообразную форму. Далее в процессе сжатия возрастает плотность и температура облака. В результате сжатия возникает будущая рождающаяся звезда (протозвезда), которая дает излучение в инфракрасном диапазоне, и поэтому рождающиеся молодые звезды обнаруживаются с помощью инструментальных наблюдений среди многочисленных источников инфракрасного излучения. Одно из основных отличий протозвезды от звезды заключается в том, что в ней еще не происходят термоядерные реакции, т. е. в ней нет основного источника энергии обычных звезд.

Термоядерные реакции начинаются, когда в процессе сжатия протозвезды температура в ее недрах станет порядка 107 К. С этого времени стадия сжатия звезды прекращается: сила внутреннего давления газа теперь уже может уравновесить силу тяготения внешних частей звезды. Стадия сжатия звезд, массы которых значительно больше массы Солнца, продолжается всего лишь сотни тысяч лет, а звезды, массы которых меньше солнечной, сжимаются сотни миллионов лет. Стадию сжатия сменяет стационарная стадия, сопровождающаяся постоянным «выгоранием» водорода. В стационарной стадии звезда находится большую часть своего существования. Таких звезд во Вселенной больше всего. Время пребывания звезды на главной последовательности пропорционально массе звезды, так как от этого зависит запас ядерного горючего, и обратно пропорционально светимости, которая определяет темп расхода ядерного горючего. А поскольку светимость звезды пропорциональна примерно четвертой степени ее массы, то массивные звезды эволюционируют быстрее. Они находятся в стационарной стадии только несколько миллионов лет, а звезды, подобные Солнцу, – миллиарды лет. Когда весь водород в центральной области звезды превратится в гелий, внутри звезды образуется гелиевое ядро. Теперь уже водород превращается в гелий не в центре звезды, а в слое, прилегающем к очень горячему гелиевому ядру. Пока внутри гелиевого ядра нет источников энергии, оно будет постепенно сжиматься и при этом еще более разогреваться. Когда температура внутри звезды превысит 1,5 X 107°К, гелий начнет превращаться в углерод с последующим образованием все более тяжелых элементов. Как показывают расчеты, светимость и размеры звезд будут возрастать. В результате обычная звезда постепенно превращается в красного гиганта, или сверхгиганта.

СОЛНЕЧНАЯ СИСТЕМА

Проблема происхождения планет Солнечной системы в частности и вообще в космическом пространстве очень сложная и еще не совсем решенная на данном этапе времени.

Сегодня существуют следующие наиболее важные выводы планетной космогонии:

– планеты нашей системы сформировались в результате объединения твердых, холодных тел и частиц, входивших в состав туманности, которая когда-то окружала Солнце;

– формирование планет происходило под воздействием различных физических процессов. Следствием механических процессов стало сжатие – уплощение вращающейся туманности, ее удаление от «протосолнца», столкновение частиц, их укрупнение;

– спутники планет, в том числе и Луна, возникли из роя частиц, окружавших планеты, т. е. в конечном итоге тоже из вещества протопланетной туманности.

Таким образом, основная идея современной планетной космогонии сводится к тому, что планеты и их спутники образовались из холодных твердых тел и частиц.

По своим физическим характеристикам планеты Солнечной системы делятся на две группы – планеты земной группы и планеты-гиганты. Планеты земной группы Меркурий, Венера, Земля, Марс имеют небольшие размеры и массы, средняя плотность этих планет в несколько раз превосходит плотность воды; они медленно вращаются вокруг своих осей; у них мало спутников. У Марса два крохотных спутника, у Земли – один, а у Венеры и Меркурия их вообще нет. Сходство планет земной группы не исключает и значительного различия. Например, Венера в отличие от других планет вращается в направлении, обратном ее движению вокруг Солнца. Период обращения Меркурия, т. е. год этой планеты, только на 1/3 больше периода его вращения вокруг оси по отношению к звездам. Углы наклона осей к плоскости их орбит у Земли и у Марса примерно одинаковы, но совсем иные у Меркурия и Венеры. А это одна из причин, определяющая характер смены времени года. Такие же, как у Земли, времена года есть на Марсе, но каждое время года почти в два раза продолжительнее, чем на Земле. По ряду физических характеристик к планетам земной группы относится и далекий Плутон – самая маленькая из 9 планет.

В состав солнечной системы входят планеты-гиганты; Юпитер, Сатурн, Уран, Нептун. Все эти планеты и особенно Юпитер, имеют большие размеры и массы. Например, по объему Юпитер превосходит Землю почти в 1320 раз, а по массе – в 318 раз. Эти планеты имеют низкую среднюю плотность, причем наименьшая она у Сатурна – 0,7 X 103кг/м3. Планеты-гиганты очень быстро вращаются вокруг своей оси. Планеты-гиганты находятся далеко от Солнца, и независимо от характера смены времени года на них всегда низкая температура. На Юпитере вообще нет смены времени года, поскольку ось этой планеты отличается наличием большого числа спутников: у Юпитера – 39, Сатурна – 30, Урана – 21 и только у Нептуна – 8. Имеется значительная особенность планет-гигантов – наличие колец, которые открыты не только у Сатурна, но и у Юпитера, Урана, Нептуна. Эти планеты не имеют твердых поверхностей. Они состоят в основном из водорода и гелия. Различия по химическому составу планет-гигантов от планет земной группы связаны с процессом образования планетной системы вокруг Солнца.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: