Тангенциальная составляющая ускорения




называется нормальной составляющей ускорения и направлена по нормали к траектории к центру ее кривизны (поэтому ее называют также центростремительным ускорением).

Полное ускорение тела есть геометрическая сумма тангенциальной и нормальной составляющих

2)законы динамики мат. Точки и систем т. Внешнее и внутренние сил. Центр масс.динамика мех-ой сист. 1-й закон Ньютона (закон инерции): всякая материальная точка сохраняет свое состояние покоя или равномерное прямолинейное движения до тех пор, пока воздействие со стороны других тел не заставит ее изменить это состояние.

2-й закон Ньютона: ускорение, приобретаемое материальной точкой, пропорционально вызывающей его силе, совпадает с нею по направлению и обратно пропорционально массе материальной точки.

3-й закон Ньютона: взякое действие материальных точек друг на друга носит характер взаимодействия; силы, с которыми действуют друг на друга материальные точки, всегда равны по модулю, противоположно направлены и действуют вдоль прямой, соединяющей эти точки.

Поступательное движение – движение, при котором любая прямая, жестко связанная с телом, остается параллельной своему первоначальному положению. Таким образом, за определенное время dt радиусы векторов всех точек поступательно движущегося тела изменяются на одну и туже величину dr. И соответственно скорости и ускорения всех точек должны быть одинаковы.

va = vb, aa = ab, v = dr/dt, a = dv/dt.

Поэтому для кинематического описания движения тела достаточно рассмотреть движение одной материальной точки.

Любое движение твердого тела можно представить как комбинацию поступательного и вращательного движения.

Вращательное движение – движение, при котором все точки движущегося тела движутся по окружностям, центры которых лежат на одной прямой, называемой осью вращения.

3)энергия,работа,мощность. Кинетическая энергия. Концерватичние и некоцервативные силы,потонциальная энергия.

Энергия — универсальная мера различных форм движения и взаимодействия. С раз­личными формами движения материи связывают различные формы энергии: механи­ческую, тепловую, электромагнитную, ядерную и др. Изменение механического движения тела вызывается силами, действующими на него со стороны других тел. Чтобы количественно характеризовать процесс обмена энергией между взаимодействующими телами, в механике вводится понятие работы силы. Элементарной работой силы F на перемещении dr называется скалярная величина

Мощность. Работа силы на участке траектории от точки 1 до точки 2 равна алгебраической сумме элементарных работ на отдельных бесконечно малых участках пути. Эта сумма приводится к интегралу

Чтобы охарактеризовать скорость совершения работы, вводят понятие мощности:

Единица мощности — ватт (Вт)

Кинетическая энергия механической системы — это энергия механического движения этой системы.

работа d A силы F на пути, который тело прошло за время возрастания скорости от 0 до v, идет на увеличение кинетической энергии d T тела, т. е.

Используя второй закон Ньютона и умножая на перемещение dr получаем

Потенциальная энергия — механическая энергия системы тел, определяемая их вза­имным расположением и характером сил взаимодействия между ними.

Пусть взаимодействие тел осуществляется посредством силовых полей, характеризующихся тем, что работа, совершаемая действующими силами при перемещении тела из одного положения в другое, не зависит от того, по какой траектории это перемещение произошло, а зависит только от начального и конечного положений. Такие поля называются потенциальными, а силы, действующие в них, — консервативными.

или в векторном виде

где

называется градиентом скаляра П.

оператором Гамильтона* или набла-оператором:

4)закон сохранения импульса и энергии. Для вывода закона сохранения импульса рассмотрим некоторые понятия. Совокуп­ность материальных точек (тел), рассматриваемых как единое целое, называется механической системой. Силы взаимодействия между материальными точками механичес­кой системы называются — внутренними. Силы, с которыми на материальные точки системы действуют внешние тела, называются внешними. Механическая система тел, на которую не действуют внешние силы, называется замкнутой (или изолированной).

Складывая почленно эти уравнения, получаем

Но так как геометрическая сумма внутренних сил механической системы по третьему закону Ньютона равна нулю, то

Зсэ.

Двигаясь под действием сил, точки системы за интервал времени d t совершают перемещения, соответственно равные dr1, dr2,..., dr n. Умножим каждое из уравнений скалярно на соответствующее перемещение и, учитывая, что dr i ==v i d t, получим

Сложив эти уравнения, получим

где d T — приращение кинетической энергии системы. Второй член равен элементарной работе внутренних и внешних консервативных сил, взятой со знаком минус, т. е. равен элементарному приращению потенциальной энергии dП системы

Если внешние неконсервативные силы отсутствуют, то из (13.2) следует, что

d (T +П) = 0,

откуда

закон сохранение механической энергии: в системе тел, между которыми действуют только консервативные силы, полная механическая энергия со­храняется, т. е. не изменяется со временем.

Механические системы, на тела которых действуют только консервативные силы (внутренние и внешние), называются консервативными системами. Закон сохранения механической энергии можно сформулировать так: в консервативных системах полная механическая энергия сохраняется.

Существует еще один вид систем — диссипативные системы В

5)угловая скорость и угловое ускарение……..

Модуль вектора равен углу поворота, а его направление совпадает с направлением поступательного движения острия винта, головка которого вращается в направлении движения точки по окружности, т.е. подчиняется правилу правого винта.

Угловой скоростью называется векторная величина, равная первой производной угла поворота тела по времени:

 

периодом вращения T — временем, за которое точка совершает один полный оборот, т.е. поворачивается на угол 2p. Так как промежутку времени D t = T соответствует = 2p, то = 2p/ T, откуда

Число полных оборотов, совершаемых телом при равномерном его движении по окружности, в единицу времени называется частотой вращения:

Угловым ускорением называется векторная величина, равная первой производной угловой скорости по времени:

При вращении тела вокруг неподвижной оси вектор углового ускорения направлен вдоль оси вращения в сторону вектора элементарного приращения угловой скорости. При ускоренном движении вектор сонаправлен вектору при замедлен­ном — противонаправлен ему

Тангенциальная составляющая ускорения

Нормальная составляющая ускорения

Моментом инерции системы (тела) относительно данной оси называется физическая величина, равная сумме произведений масс л материальных точек системы на квадраты их расстояний до рассматриваемой оси:

В случае непрерывного распределения масс эта сумма сводится к интегралу

Момент инерции каждого полого цилиндра d J=r 2d m (так как d r<<r, то считаем, что расстояние всех точек цилиндра от оси равно r), где dm — масса всего элементарного цилиндра; его объем 2p rh d r.

Если известен момент инерции тела относительно оси, проходящей через его центр масс, то момент инерции относительно любой другой параллельной оси определяется теоремой Штейнера: момент инерции тела J относительно произвольной оси равен моменту его инерции Jc относительно параллельной оси, проходящей через центр масс С тела, сложенному с произведением массы т тела на квадрат расстояния а между осями:

6)принцип относительности галлилея. Преобразования галлилея и лоренца

В классической механике справедлив механический принцип относительности (принцип относительности Галилея): законы динамики одинаковы во всех инерциальных систе­мах отсчета.

Для его доказательства рассмотрим две системы отсчета: инерциальную систему K (с координатами х, у, z), которую условно будем считать неподвижной, и систему K' (с координатами x', у', z'), движущуюся относительно K равномерно и прямолинейно со скоростью u (u=const).

Уравнение можно записать в проекциях на оси координат:

носят название преобразований координат Галилея.

Постулаты терии относительности

I. Принцип относительности: никакие опыты, проведенные внутри данной инерциальной системы отсчета, не дают возможности обнаружить, покоится ли эта система или движется равномерно и прямолинейно; все законы природы инвариантны по отношению к переходу от одной инерциальной системы отсчета к другой.

П. Принцип инвариантности скорости света: скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерциальных системах отсчета.

Преобразования Лоренца имеют вид

7)относительность длин и промежутков времени в СТО. Сложение скоростей в СТО…

Основу СТО составляют два постулата (принципа):

1. Принцип относительности Эйнштейна. Этот принцип явился обобщением принципа относительности Галилея на любые физические явления. Он гласит: все физические процессы при одних и тех же условиях в ИСО протекают одинаково. Это означает, что никакими физическими опытами, проведенными внутри замкнутой ИСО, нельзя установить, покоится ли она или движется равномерно и прямолинейно. Таким образом, все ИСО совершенно равноправны, а физические законы инвариантны по отношению к выбору

2. Принцип постоянства скорости света. Скорость света в вакууме постоянна и не зависит от движения источника и приемника света. Она одинакова во всех направлениях и во всех инерциальных системах отсчета. Скорость света в вакууме – предельная скорость в природе. Это одна из важнейших физических постоянных, так называемых мировых констант

Основной закон релятивистской динамики материальной точки имеет вид: F = d/dt (m0v/Ö(1 – v2/c2) или F = dp/dt, где p = mv = m0v/Ö(1 – v2/c2) – релятивистский импульс материальной точки.

8)ПРУЖИННЫЙ, ФИЗИЧЕСКИЙ МАТЕМЕТИЧЕСКИЙ МАЯТНИК.

Ма́ятник — система, подвешенная в поле тяжести и совершающая механические колебания. Колебания совершаются под действием силы тяжести, силы упругости и силы трения. Во многих случаях трением можно пренебречь, а от сил упругости (либо сил тяжести) абстрагироваться, заменив их связями.

Пружинный маятник — механическая система, состоящая из пружины с коэффициентом упругости(жёсткостью) k (закон Гука), один конец которой жёстко закреплён, а на втором находится груз массы m

Физический маятник — осциллятор, представляющий собой твёрдое тело, совершающее колебания в поле каких-либо сил относительно точки, не являющейся центром масс этого тела, или неподвижной оси, перпендикулярной направлению действия сил и не проходящей через центр масс этого тела.

Математи́ческий ма́ятник — осциллятор, представляющий собой механическую систему, состоящую из материальной точки, находящейся на невесомой нерастяжимойнити или на невесомом стержне в однородном поле сил тяготения.

9)гармонически колебания……

Гармоническое колебание — явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса

или

,

где х — значение изменяющейся величины, t — время, остальные параметры — постоянные: А — амплитуда колебаний, ω — циклическая частота колебаний, — полная фаза колебаний, — начальная фаза колебаний.

Обобщенное гармоническое колебание в дифференциальном виде

Затухающие колебания — колебания, энергия которых уменьшается с течением времени. Бесконечно длящийся процесс вида в природе невозможен. Свободные колебания любого осциллятора рано или поздно затухают и прекращаются. Поэтому на практике обычно имеют дело с затухающими колебаниями. Они характеризуются тем, что амплитуда колебаний A является убывающей функцией. Обычно затухание происходит под действием сил сопротивления среды, наиболее часто выражаемых линейной зависимостью от скорости колебаний или её квадрата.

1. Время релаксации t.

Временем релаксации называют промежуток времени, за который амплитуда затухающих колебаний уменьшается в е раз(е - основание натуральных логарифмов).

2. Коэффициент затухания s.

Коэффициентом затухания называют физическую величину, обратно пропорциональную времени релаксации:

  s = 1/τ или s =b/2m. (6.67)

3. Логарифмический декремент затухания l Логарифмическим декрементом затухания называют натуральный логарифм отношения амплитуды в данный момент времени к амплитуде колебания спустя период.

Действительно,

10)вынужденные колебания. Резонанс. Добротность механической системы.

Вынужденные колебания — колебания, происходящие под воздействием внешних сил, меняющихся во времени.

Автоколебания отличаются от вынужденных колебаний тем, что последние вызваны периодическим внешним воздействием и происходят счастотой этого воздействия, в то время как возникновение автоколебаний и их частота определяются внутренними свойствами самой автоколебательной системы.

Наиболее простой и содержательный пример вынужденных колебаний можно получить из рассмотрения гармонического осциллятора и вынуждающей силы, которая изменяется по закону:

Резонанс

Из решения видно, что при частоте вынуждающей силы, равной частоте свободных колебаний, оно не пригодно — возникает резонанс, то есть «неограниченный» линейный рост амплитуды со временем. Из курса математического анализа известно, что решение в этом случае надо искать в виде: . Подставим этот анзац в дифференциальное уравнениеи получим, что:

Таким образом, колебания в резонансе будут описываться следующим соотношением:

Добротность колебательной системы

отношение энергии, запасённой в колебательной системе, к энергии, теряемой системой за один период колебания. Добротность характеризует качество колебательной системы т.к. чем больше Д. к. с., тем меньше потери энергии в системе за одно колебание. Д. к. с. Q связана с логарифмическим Декрементом затухания δ; при малых декрементах затухания Q ≈ π/δ. В колебательном контуре с индуктивностью L, ёмкостью C и омическим сопротивлением R Д. к. с.

где ω — собственная частота контура. В механической системе с массой m, жёсткостью k и коэффициентом трения b Д. к. с.

11) упругие волны.уравнение бегущей волны. Волновой вектор. Стоящие волны.

Упру́гие во́лны (звуковые волны) — волны, распространяющиеся в жидких, твёрдых и газообразных средах за счёт действия упругих сил. Бегущая волна — волновое движение, при котором поверхность равных фаз (фазовые волновые фронты) перемещается с конечной скоростью (постоянной для однородной среды). С бегущей волной, групповая скорость которой отлична от нуля, связан перенос энергии, импульса или других характеристик процесса

где — амплитудная огибающая волны, — волновое число и — фаза колебаний. Фазовая скорость этой волны даётся выражением

где — это длина волны. Волновой вектор — вектор, направление которого перпендикулярнофазовому фронту бегущей волны, а абсолютное значение равноволновому числу.

Волновой вектор обычно обозначается латинской буквой и измеряется в обратных сантиметрах.

Волновое число связано с длиной волны λ соотношением:

. Стоя́чая волна́ — колебания в распределённых колебательных системах с характерным расположением чередующихся максимумов (пучностей) и минимумов (узлов) амплитуды. Практически такая волна возникает при отражениях от преград и неоднородностей в результате наложения отражённой волны на падающую. При этом крайне важное значение имеет частота, фаза и коэффициент затухания волны в месте отражения.

12)идеальный газ……

В молекулярно-кинетической теории пользуются идеализированной моделью идеаль­ного газа, согласно которой считают, что:

1) собственный объем молекул газа пренебрежимо мал по сравнению с объемом сосуда;

2) между молекулами газа отсутствуют силы взаимодействия;

3) столкновения молекул газа между собой и со стенками сосуда абсолютно упругие.

Модель идеального газа можно использовать при изучении реальных газов, так как они в условиях, близких к нормальным (например, кислород и гелий), а также при низких давления» и высоких температурах близки по своим свойствам к идеальному газу. Кроме того, внеся поправки, учитывающие собственный объем молекул газа и действующие молекулярные силы, можно перейти к теории реальных газов.

Закон Авогадро *: моли любых газов при одинаковых температуре и давлении занимают одинаковые объемы. При нормальных условиях этот объем равен 22,41×10–3 м3/моль.

* А. Авогадро (1776—1856) — итальянский физики химик.

По определению, в одном моле различных веществ содержится одно и то же число молекул, называемое постоянной Авогадро:

Закон Дальтона *: давление смеси идеальных газов равно сумме парциальных давлений p 1, p 2 ,..., рn входящих в нее газов:

Парциальное давление — давление, которое производил бы газ, входящий в состав газовой смеси, если бы он один занимал объем, равный объему смеси при той же температуре.

Как уже указывалось, состояние некоторой массы газа определяется тремя термодина­мическими параметрами: давлением р, объемом V и температурой Т. Между этими параметрами существует определенная связь, называемая уравнением состояния, кото­рое в общем виде дается выражением

уравнением Клапейрона, в котором В — газовая постоянная, различная для разных газов.

уравнением состояния идеального газа, называемым также уравнением Клапейрона — Менделеева.

Числовое значение молярной газовой постоянной определим из формулы (42.4), полагая, что моль газа находится при нормальных условиях (р 0 = 1,013×105 Па, T 0=273,15 К, V m=22,41×10–3 м3/моль): R =8,31 Дж/(моль×К).

От уравнения (42.4) для моля газа можно перейти к уравнению Клапейро­на — Менделеева для произвольной массы газа. Если при некоторых заданных давле­нии и температуре один моль газа занимает молярный объем V m, то при тех же условиях масса т газа займет объем V= (т/М)V m, где М — молярная масса (масса одного моля вещества). Единица молярной массы — килограмм на моль (кг/моль). Уравнение Клапейрона — Менделеева для массы т газа

где n =m/M количество вещества.

Часто пользуются несколько иной формой уравнения состояния идеального газа, вводя постоянную Больцмана:

Исходя из этого уравнение состояния (42.4) запишем в виде

где N A /V m = n — концентрация молекул (число молекул в единице объема). Таким образом, из уравнения

следует, что давление идеального газа при данной температуре прямо пропорциональ­но концентрации его молекул (или плотности газа). При одинаковых температуре и давлении все газы содержат в единице объема одинаковое число молекул. Число молекул, содержащихся в 1 м3 газа при нормальных условиях, называется числом Лошмидта *:

13)основные уравнение МКТ….

называется основным уравнением молекулярно-кинетической те­ории идеальных газов.

Из этого уравнения следует, что при Т =0 <e0>=0, т. е. при 0К прекращается поступательное движение молекул газа, а следовательно, его давление равно нулю. Таким образом, термодинамическая температура является мерой средней кинетической энергии поступательного движения молекул идеального газа, и эта формула раскрывает молекулярно-кинетическое толкование температуры.

 

или

 

называется барометрической формулой. Она позволяет найти атмос­ферное давление в зависимости от высоты или, измерив давление, найти высоту: Так как высоты обозначаются относительно уровня моря, где давление считается нормаль­ным, то выражение может быть записано в виде

где р — давление на высоте h.

Прибор для определения высоты над земной поверхностью называется высотоме­ром (или альтиметром).

14)внутренняя энергия…

Важной характеристикой термодинамической системы является ее внутренняя энергия U — энергия хаотического (теплового) движения микрочастиц системы и энергия взаимодействия этих частиц..

Внутренняя энергия — однозначная функция термодинамического состояния систе­мы, т. е. в каждом состоянии система обладает вполне определенной внутренней энергией

выражает первое начало термодинамики: теплота, сообщаемая систе­ме, расходуется на изменение ее внутренней энергии и на совершение ею работы против внешних сил.

работа совершаемая газом.

Удельная теплоемкость вещества — величина, равная количеству теплоты, необходи­мому для нагревания 1 кг вещества на 1 К:

Молярная теплоемкость —величина, равная количеству теплоты, необходимому для нагревания 1 моль вещества на 1 К:

где n= m / Мколичество вещества.

Удельная теплоемкость с связана с молярной С m, соотношением

где М — молярная масса вещества.

т. е. молярная теплоемкость газа при постоянном объеме СV равна изменению внут­ренней энергии 1 моль газа при повышении его температуры на 1 К. тогда

Если газ нагревается при постоянном давлении

Учитывая, что не зависит от вида процесса (внутренняя энергия идеального газа не зависит ни от p, ни от V, а определяется лишь температурой Т) и всегда равна СV и дифференцируя уравнение Клапейрона — Менделеева pVm=RT по T (p =const), получаем

называется уравнением Майера; оно показывает, что Ср всегда больше СV на величину молярной газовой постоянной. Это объясняется тем, что при нагрева­нии газа при постоянном давлении требуется еще дополнительное количество теплоты на совершение работы расширения газа, таккак постоянство давления обеспечивается увеличением объема газа.

15)виды термодинамических процессов…

Изохорный процесс (V =const). Диаграмма этого процесса (изохора) в координатах р, V изображается прямой, параллельной оси ординат гПри изохорном процессе газ не совершает работы над внешними телами, т. е.

Изобарный процесс (p =const). Диаграмма этого процесса (изобара) в координатах р, V изображается прямой, параллельной оси V. При изобарном процессе работа газа (см. (52.2)) при увеличения объема от V 1 до V 2 равна

и определяется площадью заштрихованного прямоугольника Клапейрона — Менделеева для выбранных нами двух состояний, то

откуда

Тогда выражение (54.2) для работы изобарного расширения примет вид

Изотермический процесс (T =const)., изотермический процесс описывается законом Бойля—Мариотта:

Диаграмма этого процесса (изотерма) в координатах р, V представляет собой гиперболу, расположенную на диаграмме тем выше, чем выше тем­пература, при которой происходит процесс.

найдем работу изотермического расширения газа:

Так как при Т =const внутренняя энергия идеального газа не изменяется:

Адиабатическим называется процесс, при котором отсутствует теплообмен (dQ= 0)между системой и окружающей средой. К адиабатическим процессам можно отнести все быстропротекающие процессы.

Круговым процессом (или циклом) называется процесс, при котором система, пройдя через ряд состояний, возвращается в исходное. На диаграмме процессов цикл изоб­ражается замкнутой кривой

.Если за цикл совершается положительная работа A= >0 (цикл протекает по часовой стрелке), то он называется прямым если за цикл совершается отрицательная работа A= <0 (цикл протекает против часовой стрелки), то он называется обратным

Понятие энтропии введено в 1865 г. Р. Клаузиусом. Для выяснения физического содержания этого понятия рассматривают отношение теплоты Q, полученной телом в изотермическом процессе, к температуре Т теплоотдающего тела, называемое приведенным количеством теплоты.

Функция состояния, дифференциалом которой является dQ/T, называется энтропией и обозначается S.

следует, что для обратимых процессов изменение энтропии

В термодинамике доказывается, что энтропия системы, совершающей необратимый цикл, возрастает:

второе начало термодинамики можно сформулировать как закон возрастания энтропии замкнутой системы при необратимых процессах: любой необратимый процесс в замкнутой системе происходит так, что энтропия системы при этом возрастает. Первые два начала термодинамики дают недостаточно сведений о поведении термодинамических систем при нуле Кельвина. Они дополняются третьим началом термодинамика, или теоремой Нернста* — Планка: энтропия всех тел в состоянии равновесия стремится к нулю по мере приближения температуры к нулю Кельвина:

Карно теоретически проанализировал обратимый наиболее экономичный цикл, состоящий из двух изотерм и двух адиабат. Его называют циклом Карно. Рассмотрим прямой цикл Карно, в котором в качестве рабочего тела используется идеальный газ, заключенный в сосуд с подвижным поршнем.

Цикл Карно изображен на рис. 87, где изотермические расширение и сжатие заданы соответственно кривыми 12 и 3—4, а адиабатические расширение и сжатие — кривы­ми 23 и 4—1. При изотермическом процессе U= const, поэтому, согласно (54.4), количество теплоты Q 1, полученное газом от нагревателя, равно работе расширения А 12, совершаемой газом при переходе из состояния 1 в состояние 2:

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: