Расчет параметров схемы.




Оглавление

 

Описание работы устройства. 3

LC-генератор с трансформаторной обратной связью. 3

Условия задания. 5

Параметры транзисторов. 5

Расчёт параметров схемы.. 6

Компьютерное моделирование генератора. 9

Вывод. 10

Список использованной литературы.. 11

 

Описание работы устройства

 

Генераторы синусоидальных колебаний осуществляют преобразования энергии источника постоянного тока в переменный ток требуемой частоты.

Генераторы синусоидальных колебаний выполняют с колебательным LC -контуром и частотно-зависимыми RC -цепями.

LC -генераторы предназначены для генерирования сигналов высокой частоты – свыше нескольких десятков килогерц – а RC -генераторы используются на низких частотах – вплоть до одного герца.

Генераторы LC -типа основаны на использовании избирательных LC -усилителей.

Частотная избирательность усилителей создаёт высокую помехозащищённость систем, работающих на фиксированных частотах, что широко используется в устройствах автоматического управления и контроля. На способности выделения с помощью избирательных усилителей фиксированы гармонических составляющих из широкого спектра частот входного сигнала основана работа ряда измерительных устройств промышленной электроники. Избирательные усилители широко распространены в радиоприёмных и телевизионных устройствах, а также в многоканальных системах связи. Здесь они решают задачу настройки приёмного устройства на фиксированную частоту принимаемой ситуации, не пропуская сигналы других частот.

Схемная реализация LC -генераторов достаточно разнообразна. Они могут отличаться способами включения в усилитель колебательного контура и создания в нём положительной обратной связи.

Рассмотрим схемы генераторов LC с колебательным контуром.

 

LC-генератор с трансформаторной обратной связью.

Усилительный каскад (рис. 1.) выполнен на транзисторе ОЭ с известными элементами R1, R2, RЭ, CЭ предназначены для задания режима покоя и температурной стабилизации. Выходной сигнал снимается с коллектора транзистора.

Параметрами колебательного контура является ёмкость конденсатора C и индуктивности L первичной обмотки w1 трансформатора. Сигнал обратной связи снимается с вторичной обмоткой w2, индуктивно связанной с обмоткой w1 и подаётся на вход транзистора. Отклонение

Рис. 1. Схема генератора с трансформаторной обратной связью

Сигнал обратной связи может быть снят непосредственно с колебательного контура.

 

Ввиду зависимости величин L, C колебательного контура и параметров транзистора от температуры наблюдается зависимость от температуры и частоты f. В условиях постоянства температуры нестабильность частоты вызвана изменением дифференциальных параметров транзистора в зависимости от изменения положения точки покоя усилительного каскада, что в частности, обуславливает необходимость его стабилизации. Наибольшая стабильность частоты достигается при использовании в генераторах кварцевого резонатора. Высокая стабильность частоты обуславливается тем, что кварцевый резонатор, являясь эквивалентом последовательного колебательного контура, обладает высокой добротностью.

Генераторы LC -типа реализуются в виде гибридных интегральных микросхем, в которых реактивные элементы L, C применяют в качестве навесных.

 

 

Условия задания

 

LC -генератор построен с помощью транзистора КТ315Г, генератор с обратной связью.

Рабочая частота f = 500 кГц Входное напряжение U = 12 В

Параметры транзисторов

 

Наимен. тип Uкбо(и),В Uкэо(и), В Iкmax(и), мА Pкmax(т), Вт h21э Iкбо, мкА fгр., МГц Кш, Дб
КТ315А n-p-n       0.15 30-120 0.5   -
КТ315Б       0.15 50-350 0.5   -
КТ315В       0.15 30-120 0.5   -
КТ315Г       0.15 50-350 0.5   -
КТ315Г1       0.15 100-350 0.5   -
КТ315Д       0.15 20-90 0.6   -
КТ315Е       0.15 50-350 0.6   -
КТ315Ж       0.1 30-250 0.01   -
КТ315И       0.1   0.1   -
КТ315Н       0.1 50-350 0.6   -
КТ315Р       0.1 150-350 0.5   -

 

Uкбо - Максимально допустимое напряжение коллектор-база
Uкбои - Максимально допустимое импульсное напряжение коллектор-база
Uкэо - Максимально допустимое напряжение коллектор-эмиттер
Uкэои - Максимально допустимое импульсное напряжение коллектор-эмиттер
Iкmax - Максимально допустимый постоянный ток коллектора
Iкmax и - Максимально допустимый импульсный ток коллектора
Pкmax - Максимально допустимая постоянная рассеиваемая мощность коллектора без теплоотвода
Pкmax т - Максимально допустимая постоянная рассеиваемая мощность коллектора с теплоотводом
h21э - Статический коэффициент передачи тока биполярного транзистора в схеме с общим эмиттером
Iкбо - Обратный ток коллектора
fгр - граничная частота коэффициента передачи тока в схеме с общим эмиттером
Кш - коэффициент шума биполярного транзистора

 

 

Расчет параметров схемы.

Для нахождения тока на коллекторе необходимо построить график зависимости напряжения от этого тока с учётом, что максимальная допустимая постоянная рассеиваемая мощность коллектора без теплоотвода составляет 150 мВ (см. параметры транзисторов в таблице). После построения графика (рис. 4.) к нему нужно провести касательную, проходящую через точку на оси абсцисс 12 В, эта точка соответствует входному значению напряжения, данного в задании курсовой работы. Точка пересечения касательной с осью ординат даст номинальное значение коллекторного тока. Для нормальной работы транзистора ток на коллекторе берётся в четыре - пять раз меньше.

Рис. 4. График зависимости тока на коллекторе от напряжения

С учётом термостабилизации напряжение на коллекторе , напряжение питания распределяется между напряжением коллектора и эммитера в пропорции 10 к 1 – это применимо к более мягким условиям эксплуатации, а, например, для более жёстких условий – большой разброс рабочих температур – на коллектор подаётся 80% от входного напряжения.

 

По найденному из графика значению и взятому из выше изложенных условий можно найти значение сопротивления на коллекторе:

.

связано с значением индуктивности в цепи и ёмкости эммитера следующим выражением: , где значение корня является волновым сопротивлением цепи .

Найдя значение волнового сопротивления, и, зная, что по условию частота работы генератора составляет 250 кГц, можно составить систему уравнений.

Решив систему, получаем значения емкости конденсатора С и параметра индуктивности L:

 

Статический коэффициент передачи тока биполярного транзистора в схеме с общим эмиттером выбирается близким к наименьшему значению или приравнивается к нему самому. С помощью и уже известного значения тока на коллекторе находится ток базы. Ток, проходящий через сопротивление , берётся в четыре раза больше. Отсюда по первому закону Кирхгофа находится ток на резисторе .

Используя закон Ома, находятся сопротивления резисторов , , , необходимые параметры цепи были посчитаны выше.

 

Полученные расчётные значения:


Компьютерное моделирование генератора

 

Для проверки работоспособности генератора был использован компьютерный пакет OrCad. При помощи его были получены график напряжения на коллекторе (рис. 5.), а также построена электрическая схема со всеми расчётными параметрами (рис. 6.). При моделировании были приняты некоторые допущения, например, отечественный транзистор КТ315 был заменён моделью Q2N3906, как наиболее схожим с ним.

Рис. 5. Графики напряжений на коллекторе транзистора КТ315Г


Рис. 6. Схема

Вывод

 

В соответствии с заданием разработан LC-генератор с обратной связью на транзисторе КТ315Г. Форма колебаний напряжений синусоидальна, среднее значение напряжения на коллекторе составляет 12 В при входном напряжении 12 В, его амплитуда равна 15 В. Рабочая частота соответствует требованиям условия задания и равна 500 кГц.


 

Список использованной литературы

 

1. Забродин Ю.С. Промышленная электроника: учебник для вузов. – М.: Высшая школа, 1982.

2. Горбачёв Г.Н. Промышленная электроника: учебник для вузов. – М.: Энергоатомиздат, 1987.

3. Адамьян Ю.Э., Черняев И.В., Михайлов Ю.А. Информационно-измерительная техника и электроника: лабораторный практикум. – СПб.: СпбГПУ, 2001.

4. Изъюрова Г.И. Приборы и устройства промышленной электроники. – М., Высшая школа, 1975.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-12-07 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: