Уравнение движения релятивистской частицы




Сложение скоростей в СТО

Где v – скорость движения одной системы относительно другой.

Скорость света в вакууме есть предельная скорость, которую невозможно превысить.

Уравнение движения релятивистской частицы

m0 - масса, измеренная в той инерциальной системе отсчета, относительно которой материальная точка находится в покое.

- релятивистский импульс материальной точки

8) Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия.

Для того, чтобы свободные колебания совершались по гармоническому закону, необходимо, чтобы сила, стремящаяся возвратить тело в положение равновесия, была пропорциональна смещению тела из положения равновесия и направлена в сторону, противоположную смещению:F (t) = ma (t) = –m ω2 x (t ).Частота ω0 называется собственной частотой колебательной системы.

Период T гармонических колебаний груза на пружине равен

Второй закон Ньютона для груза на пружине может быть записан в виде

-уравнение свободных колебаний.

Физическим маятником называется тело, укрепленное на неподвижной горизонтальной оси, не проходящей через его центр тяжести, и способное совершить колебания относительно этой оси.

Если маятник отклонен от положения равновесия на некоторый угол α, то в соответствии с уравнением динамики вращательного движения твердого тела момент М возвращающей силы F можно записать в виде:

Математический маятник - идеализированная система, состоящая из материальной точки массой m, подвешенной на нерастяжимой, невесомой нити, и колеблющейся под действием силы тяжести

Циклическая частота математического маятника:

9)Колебания, при которых изменения физических величин происходят по закону косинуса или синуса (гармоническому закону), наз. гармоническими колебаниями. Например, в случае механических гармонических колебаний: В этой формуле ω – частота колебания, xm – амплитуда колебания, φ0 и φ0’ – начальные фазы колебания. Приведенные формулы отличаются определением начальной фазы и при φ0’ = φ0 +p/2 полностью совпадают.

-фаза колебания.

Фаза колебания измеряется в радианах и определяет значение смещения (колеблющейся величины) в данный момент времени.

Затухающие колебания — колебания, энергия которых уменьшается с течением времени. Бесконечно длящийся процесс вида в природе невозможен. Свободные колебания любого осциллятора рано или поздно затухают и прекращаются. Поэтому на практике обычно имеют дело с затухающими колебаниями. Они характеризуются тем, что амплитуда колебаний A является убывающей функцией. Обычно затухание происходит под действием сил сопротивления среды, наиболее часто выражаемых линейной зависимостью от скорости колебаний или её квадрата.

Время релаксации — период времени, за который амплитудное значение возмущения в выведенной из равновесия физической системе уменьшается в e раз, в основном обозначается греческой буквой τ.

Декремент затухания, количественная характеристика быстроты затухания колебаний. Д. з. d равен натуральному логарифму отношения двух последующих максимальных отклонений х колеблющейся величины в одну и ту же сторону:

Добро́тность — свойство колебательной системы, определяющее полосу резонанса и показывающее, во сколько раз запасы энергии в системе больше, чем потери энергии за один период колебаний.

-общая формула для добротности любой колебательной системы;где, резонансная частота колебаний;W-энергия,запасенная в колебательной системе;P(d)-рассеиваемая мощность.

10) Вынужденными колебаниями наз. незатухающие колебания системы, которые вызываются действием внешней периодической силы. Если сила не будет периодической, то не возникнет и периодических колебаний. Например, если сила постоянна, то возникает статическое отклонение системы.Примеры: колебания гребных винтов, лопаток турбины, качелей при раскачивании, мостов и балок при ходьбе и т.д.

Сила, вызывающая вынужденные колебания, наз. вынуждающей (возмущающей) силой.

Явление возрастания амплитуды колебаний при приближении частоты вынуждающей силы w к собственной частоте колебательной системы w0, называется резонансом. Соответственно данная частота наз. резонансной частотой.

При наличии трения резонансная частота несколько меньше собственной частоты колебательной системы. С энергетической точки зрения при резонансе создаются наилучшие условия для передачи энергии от внешнего источника к колебательной системе.

Резонанс применяется для измерения частоты (частотомеры) вибраций, в акустике. Резонанс необходимо учитывать при расчете балок, мостов, станков и т.д.

Добротность — количественная характеристика резонансных свойств колебательной системы, указывающая, во сколько раз амплитуда установившихся вынужденных колебаний при резонансе превышает амплитуду вынужденных колебаний вдали от резонанса, т. е. в области столь низких частот, где амплитуду вынужденных колебаний можно считать не зависящей от частоты.

11) Упру́гиево́лны (звуковые волны) — волны, распространяющиеся в жидких, твёрдых и газообразных средах за счёт действия упругих сил.В зависимости от частоты различают инфразвуковые, звуковые и ультразвуковые упругие волны.В жидких и газообразных средах может распространяться только один тип упругих волн — продольные волны. В волне этого типа движение частиц осуществляется в направлении распространения волны.В твёрдых телах существуют касательные напряжения, что приводит к существованию других типов волн, в которых движение частиц осуществляется по более сложным траекториям.Упругие волны, распространяющиеся в земной коре, называют сейсмическими волнами.

- уравнение бегущей волны.

- волновое число. Подставив эту формулу в уравнение бегущей волны,получим:

Волновой вектор — вектор, направление которого перпендикулярно фазовому фронту бегущей волны, а абсолютное значение равно волновому числу.

Стоячая волна -колебания в распределённых колебательных системах с характерным расположением чередующихся максимумов (пучностей) и минимумов (узлов) амплитуды. Практически такая волна возникает при отражениях от преград и неоднородностей в результате наложения отражённой волны на падающую. При этом крайне важное значение имеет частота, фаза и коэффициент затухания волны в месте отражения. Формула стоячей волны:

12) Идеальный газ — математическая модель газа, в которой предполагается, что: 1) потенциальной энергией взаимодействия молекул можно пренебречь по сравнению с их кинетической энергией; 2) суммарный объем молекул газа пренебрежимо мал. Между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги, а время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями. В расширенной модели идеального газа частицы, из которого он состоит, имеют также форму в виде упругих сфер или эллипсоидов, что позволяет учитывать энергию не только поступательного, но и вращательно-колебательного движения, а также не только центральные, но и нецентральные столкновения частиц и др.

Уравнение Менделеева-Клапейрона:

Закон Авогадро:в равных объемах газов при одинаковых температурах и давлениях содержится одинаковое число молекул.

Согласно закону Авогадро различные газы, взятые в количестве 1 моль, имеют одинаковые объемы при одинаковых давлениях р и температурах t, так как число молекул в них одно и то же. При нормальных условиях, т. е. при температуре О °С и атмосферном давлении 101 325 Па, этот объем, как показывают измерения, равен -молярный объем.

Законы Дальтона — два физических закона, определяющих суммарное давление и растворимость смеси газов.

Давление смеси химически не взаимодействующих идеальных газов равно сумме парциальных давлений.

Изопроцессы - процессы, протекающие при неизменном значении одного из параметров. Изотермический процесс (T = const, следовательно ΔU = 0).По первому закону термодинамики: Q = A'. Газ совершает работу A' за счет подводимого тепла Q (A'>0, Q>0). Совершение работы внешними силами A (сжатие газа) требует отвода тепла Q от газа для сохранения его температуры (A>0, Q<0).

Изохорный процесс (V = const, следовательно A = 0).По первому закону термодинамики: ΔU = Q.Нагревание газа в закрытом сосуде приводит к увеличению его внутренней энергии U (температуры) (Q>0, ΔU>0). Охлаждение газа в закрытом сосуде приводит к уменьшению его внутренней энергии U (температуры) (Q<0, ΔU<0).

Изобарный процесс (p = const).

По первому закону термодинамики: Q = ΔU + A'. Подводимое к газу тепло Q частично идет на увеличение внутренней энергии U, а частично на совершение работы газом A' (Q>0, ΔU>0, A'>0). Работа внешних сил A при изобарном сжатии газа требует отвода тепла Q от газа, одновременно уменьшается его внутренняя энергия U (Q<0, ΔU<0, A>0).

Адиабатный процесс - процесс, протекающий без теплообмена с окружающей средой (Q = 0).По первому закону термодинамики: ΔU = A. Вся работа внешних сил А идет только на увеличение внутренней энергии газа (A>0, ΔU>0). Работа газа А' совершается только за счет потери внутренней энергии газа (A'>0, ΔU<0).

-уравнение адиабатического процесса или уравнение Пуассона.

-коэффициент Пуассона.

 

13)-основное уравнение Молекулярно Кинетич Теории. Давление газа равно двум третям средней кинетической энергии поступательного движения молекул, содержащихся в единице объема.

Температура

Барометрическая формула — зависимость давления или плотности газа от высоты в поле тяжести. ,где р-давление газа в слое,расположенном на высоте h;р0-давление на нулевом уровне(h=h0);М-молярная масса газа; R-газовая постоянная;Т-абсолютная температура.

Распределение, закон Максвелла-Больцмана — распределение молекул газа по координатам и скоростям при наличии произвольного потенциального силового поля.

-распределение Максвелла по импульсам.

-распределение Больцмана по положениям.

14) Внутренняя энергия (обозначается как E или U) — это сумма энергий молекулярных взаимодействий и тепловых движений молекулы. Внутренняя энергия является однозначной функцией состояния системы. Это означает, что всякий раз, когда система оказывается в данном состоянии, её внутренняя энергия принимает присущее этому состоянию значение, независимо от предыстории системы. Следовательно, изменение внутренней энергии при переходе из одного состояния в другое будет всегда равно разности между ее значениями в конечном и начальном состояниях, независимо от пути, по которому совершался переход.

Внутреннюю энергию тела нельзя измерить напрямую. Можно определить только изменение внутренней энергии: ,

Где Q -подведенное к телу количество теплоты,измеренное в джоулях ;А- работа,совершаемая телом против внешних сил,измеренная в джоулях.

Работа,совершаемая газом при изобарном процессе .

При изохорном процессе .

Изотермический процесс является идеальным процессом, т.к. расширение газа при постоянной температуре может происходить только бесконечно медленно. При конечной скорости расширения возникнут градиенты температуры.

При адиабатном процессе:

Первое начало термодинамики. Количество теплоты, полученное системой, идет на изменение ее внутренней энергии и совершение работы против внешних сил.

Первый закон (первое начало) термодинамики можно сформулировать так: «Изменение полной энергии системы в квазистатическом процессе равно количеству теплоты Q, сообщенного системе, в сумме с изменением энергии, связанной с количеством вещества N при химическом потенциале , и работы A', совершённой над системой внешними силами и полями, за вычетом работы А, совершённой самой системой против внешних сил»:

Теплоёмкость тела (обычно обозначается латинской буквой C) — физическая величина, определяющая отношение бесконечно малого количества теплоты δQ, полученного телом, к соответствующему приращению его температуры δT:

Теплоемкость многоатомных газов. C = Q / m delta T; C = dQ/ dTm;

Cm = dQ / dT МЮ – молярная теплоемкость. В газе различают теплоемкости при постоянном давлении и теплоемкость при постоянном объеме.1) V=const;dV=0; dA=PdV=0; dQ=dU; Ev = dQm / dT; Eт = dUm / dT;

Um = i k T Na/ 2 = i R T / 2; где i – число степеней свободы; dUm = i R dT / 2; ^ Ev = i R / 2 – теплоемкость при постоянном V;

2) P = const;dAm = dm + dA; dA= pdV; PV=RT; PdV= RdT;

dQm = CvdT + RdT = Cv + RdT; Cp = dQm / dT= Cv +R; Cp= Cv +R - уравнениеМайера; Cp = (iR / 2) + R = ((i +2)/ 2) R; Cp = ((i+2) / 2) R;

γ = Cp / Cv = (i+2) / i – коэффециентПуассона.

15) Изотермический процесс (T = const, следовательно ΔU = 0).По первому закону термодинамики: Q = A'. Газ совершает работу A' за счет подводимого тепла Q (A'>0, Q>0). Совершение работы внешними силами A (сжатие газа) требует отвода тепла Q от газа для сохранения его температуры (A>0, Q<0).

Изохорный процесс (V = const, следовательно A = 0).По первому закону термодинамики: ΔU = Q.Нагревание газа в закрытом сосуде приводит к увеличению его внутренней энергии U (температуры) (Q>0, ΔU>0). Охлаждение газа в закрытом сосуде приводит к уменьшению его внутренней энергии U (температуры) (Q<0, ΔU<0).

Изобарный процесс (p = const).

Адиабатный процесс - процесс, протекающий без теплообмена с окружающей средой (Q = 0).По первому закону термодинамики: ΔU = A. Вся работа внешних сил А идет только на увеличение внутренней энергии газа (A>0, ΔU>0). Работа газа А' совершается только за счет потери внутренней энергии газа (A'>0, ΔU<0).

Ряд последовательных термодинамических процессов, представляющих собой один замкнутый, называется круговым термодинамическим процессом или циклом.

Циклы подразделяются на прямые и обратные. Прямыми называются циклы, в которых теплота преобразуется в работу, обратными – в которых теплота передается от более холодного тела к более нагретому. При изображении циклов на термодинамических диаграммах последовательный обход процессов в прямом цикле происходит по часовой стрелке,в обратном цикле – против часовой стрелки.

Для всех циклов очевидным является условие:

Прямой цикл. Прямой цикл – это цикл двигателя. В этом цикле происходит преобразование теплоты в механическую работу.Для оценки эффективности преобразования теплоты в работу в прямом цикле используют термический коэффициент полезного действия (КПД), под которым понимают отношение работы, полученной в цикле, к затраченной теплоте:

Обратный цикл. Обратный цикл служат для производства холода или теплоты. В нем рабочее тело переносит теплоту от холодного источника к горячему. Для совершения такого несамопроизвольного процесса затрачивается работа цикла. Обратные циклы реализуются в холодильных машинах и тепловых насосах.

Термодинамическая энтропия — аддитивная термодинамическая величина, функция состояния термодинамической системы.

Энтропия для обратимых процессов: ,

,где S-изменение энтропии;Q-изменение теплоты;T-абсолютная термодинамическая температура. Энтропия в дифференциальной форме:

Интегральная форма энтропии для обратимых процессов:

Второе начало термодинамики — физический принцип, накладывающий ограничение на направление процессов передачи тепла между телами.Второеначало термодинамики запрещает так называемые вечные двигатели второго рода, показывая, что коэффициент полезного действия не может равняться единице, поскольку для кругового процесса температура холодильника не может равняться абсолютному нулю (невозможно построить замкнутый цикл, проходящий через точку с нулевой температурой).Второе начало термодинамики является постулатом, не доказываемым в рамках термодинамики. Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.

Существуют несколько эквивалентных формулировок второго начала термодинамики:

Постулат Клаузиуса: «Невозможен процесс, единственным результатом которого являлась бы передача тепла от более холодного тела к более горячему»[1] (такой процесс называется процессом Клаузиуса).

Постулат Томсона (Кельвина): «Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара» (такой процесс называется процессом Томсона).

Третье начало термодинамики (теорема Нернста) — физический принцип, определяющий поведение энтропии при приближении температуры к абсолютному нулю. Является одним из постулатов термодинамики, принимаемым на основе обобщения значительного количества экспериментальных данных.

Третье начало термодинамики может быть сформулировано так:

 

«Приращение энтропии при абсолютном нуле температуры стремится к конечному пределу, не зависящему от того, в каком равновесном состоянии находится система».

Цикл Карно — идеальный термодинамический цикл. Тепловая машина Карно, работающая по этому циклу, обладает максимальным КПД из всех машин, у которых максимальная и минимальная температуры осуществляемого цикла совпадают соответственно с максимальной и минимальной температурами цикла Карно. Состоит из 2 адиабатических и 2 изотермических процессов.

Одним из важных свойств цикла Карно является его обратимость: он может быть проведён как в прямом, так и в обратном направлении, при этом энтропия адиабатически изолированной (без теплообмена с окружающей средой) системы не меняется.

Цикл Карно состоит из четырёх стадий:

Изотермическое расширение. В начале процесса рабочее тело имеет температуру , то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передаёт ему количество теплоты . При этом объём рабочего тела увеличивается.

Адиабатическое (изоэнтропическое ) расширение. Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом его температура уменьшается до температуры холодильника.

Изотермическое сжатие. Р абочее тело, имеющее к тому времени температуру , приводится в контакт с холодильником и начинает изотермически сжиматься, отдавая холодильнику количество теплоты .

Адиабатическое (изоэнтропическое ) сжатие. Рабочее тело отсоединяется от холодильника и сжимается без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: