полупроводниковых приборов 12 глава




ЦАП на источниках тока обладают более высокой точностью. В от­личие от предыдущего варианта, в котором весовые токи форми­ру­ются резисторами сравнительно небольшого сопротивления и, как следствие, зависят от сопротивления ключей и нагрузки, в данном слу­­­­чае весовые токи обеспечиваются транзистор­ными источниками то­ка, имеющими высокое динамическое сопро­тив­ление. Упрощенная схема ЦАП на источни­ках тока приведена на рис.13.9.

Рис.13.9. Схема ЦАП на

источ­никах тока

 

Весовые токи фор­ми­ру­ются с помощью резистивной матрицы. Потенциалы баз тран­зисторов одинаковы, а чтобы были равны и потенциалы эмиттеров всех транзисторов, площади их эмиттеров делают различными в соответствии с весовыми коэффициентами. Правый резистор матрицы подключен не к общей шине, как на схеме рис.13.4, а к двум параллельно включенным одинаковым транзисторам VT0 и VTн, в результате чего ток через VT0 равен половине тока через VT1. Входное напряжение для резистивной матрицы создается с помощью опорного транзис­тора VTоп и операционного усилителя ОУ1, выходное напряжение которого устанавливается таким, что коллекторный ток транзистора VTоп принимает значение Iоп. Выход­ной ток для n -разрядного ЦАП

.

Характерными примерами ЦАП на переключателях тока с биполярными транзисторами в качестве ключей являются 12-разрядный 594ПА1 с временем установления 3,5 мкс и погрешностью линейности не более 0,012% и 12-разрядный AD565, имеющий время установления 0,2 мкс при такой же погрешности линейности. Еще более высоким быстродействием обладает AD668, имеющий время установления 90 нс и ту же погрешность линейности. Из новых раз­работок можно отметить 14-разрядный AD9764 со временем уста­новления 35 нс и погрешностью линейности не более 0,01%. В качестве переключателей тока Si часто используются биполярные дифференциальные каскады, в которых транзисторы работают в активном

Рис.13.10. Переключатель тока на дифференциаль-­

ных усилителях

 

режиме. Это позволя­ет сократить время ус­та­­­новления до еди­ниц на­носекунд. Схема переключателя тока на диффе­рен­циа­ль­ных усилителях приведена на рис.13.10.

Дифференциальные каскады VT1-VT3 и VT'1-VT'3 образованы из стандартных ЭСЛ вентилей. Ток Iк, протекающий через вывод кол­лектора выходного эмиттерного повторителя, является выходным током ячейки. Если на цифровой вход Di подается напряжение высо­кого уровня, то транзистор VT3 открывается, а транзистор VT'3 закры­вается. Выходной ток определяется выражением

.

Точность значительно повышается, если резистор Rэ заменить источником постоянного тока, как в схеме на рис.13.9. Благодаря симметрии схемы существует возможность формирования двух выходных токов – прямого и инверсного. Наиболее быстро­действующие модели подобных ЦАП имеют входные ЭСЛ-уровни. Примером может служить 12-ти разрядный МАХ555, имеющий время установления 4 нс до уровня 0,1%. Поскольку выходные сиг­налы таких ЦАП захватывают радиочастотный диапазон, они имеют выходное сопротивление 50 или 75 Ом, которое должно быть согласовано с волновым сопротивлением кабеля, подключаемого к выходу преобразователя.

Принципы построения ЦАП для троичной системы счисле­ния. Познавательный интерес представляет возможность выполнения цифро-аналоговых преобразований для систем счисления с любым основанием. В общем случае ЦАП находит аналоговый эквивалент заданной кодовой комбинации последовательным выполнением операций сложения произведений веса каждого разряда на соответствующую цифру в этом разряде. Отсюда основой построения ЦАП является сумматор на операционном усилителе. Для типовой схемы ЦАП на взвешенных резисторах по рис.13.5 эквивалентом веса разряда является величина тока, протекающая через тот или иной резистор на суммирующую точку операционного усилителя. Величины токов задаются значениями сопротивлений, номиналы которых уменьшаются в два раза при переходе от младшего разряда к последующему более старшему разряду. Если бит соответствующего разряда равен единице, то ключ Si подсоединяет цепь тока к суммирующей точке ОУ, в противном случае при нулевом значении бита цепь тока этого разряда разорвана.

Этот принцип по­строения преобразо­ва­ния следует приме­нить и при разра­бот­ке ЦАП для троич­ной системы счисле­ния. Принципиаль­ная схема устройства представлена на рис.13.11.

Рис.13.11. Принципи­аль­ная схема ЦАП для троичной системы счи­-

сления

В системе счи­сления с ос­но­ванием n используются циф­ры от нуля до (n-1), то есть в нашем слу­чае 0,1,2. Преоб­ра­зуемый код заносит­ся в ре­гистр ЦАП, и вес разряда при пере­ходе от нулевого млад­­­ше­го к после­дующему старше­му определяется последователь­ностью 30, 31, … 3n-1. В каждом i-ом разряде преобразуемого кода может находиться одна из цифр набора 0,1,2 при общем количестве разрядов n. В зависимо­сти от величины цифры младшего нулевого разряда переключатель S0 устанавливается в одно из трёх положений: нижнее (цифра 0), среднее (цифра 1) и верх­нее (циф­ра 2). Совокупность цифр разряда реализуется набором из трёх резисто­­ров – R00, R01, R02 (здесь и далее в индексах резисторов первая цифра указывает на номер реализуемого разряда, второй символ определяет моделируемую цифру набора). Нулевое значение млад­­­шей цифры моделируется тем, что выход нижнего резистора группы R00=R подсоединён к земле. Величины остальных двух резисторов группы цифр младшего разряда устанавливаются из следующих соображений. Наличие единичного сигнала на среднем резисторе R01 группы младшего разряда, моделирующего цифру 1, должно вызывать появление на выходе ОУ напряжения, эквивалентного единице. Следовательно, коэффициент передачи ОУ по этому каналу дол­жен быть равен единице, и тогда на основании выражения (5.3) R01=R. По аналогии наличие единичного сигнала на резисторе R02 группы млад­шего разряда, моделирующего цифру 2, должно вызывать появление на выходе ОУ напряжения, эквивалентного двум. Поэтому коэффициент передачи по этому каналу должен быть равен двум, и на основании (5.3) R02=R/2.

Переход к моделированию цифр первого разряда должен учитывать вес этих цифр, равный 31. Здесь и далее ситуация с резисторами R10, R20, …остаётся неизменной – они подключены к земле через резистор R. Сигнал на входе резистора R11 должен приводить к появлению на выходе ОУ напряжения, эквивалентного 31, поэтому коэффициент передачи канала должен быть равен трём, и R11=R/3. Сигнал на входе резистора R12 должен вызывать появление на выходе ОУ напряжения, эквивалентного шести. Тогда R12=R/6.

Далее всё повторяется с увеличением весов последующих разрядов в три раза и снижением сопротивлений резисторов в три и шесть раз. Получили схему ЦАП для троичной системы счисления на взвешенных резисторах (рис.13.11), которая полностью повторяет недостатки аналогичной схемы для двоичной системы счисления.

Контрольные вопросы

1. Назначение, классификация цифро-аналоговых преобразователей, основные их характеристики?

2. Последовательные ЦАП: с широтно-импульсной модуляцией, на переключаемых конденсаторах – схемные реализации, их работа, основные соотношения, применение?

3. Параллельные ЦАП: преобразователи с суммированием весовых токов – схемное построение, основные соотношения, практическая реализация, метрологические характеристики?

4. Параллельные ЦАП: преобразователи на матрице R-2R - схемное построение, основные соотношения, практическая реализация, метрологические характеристики?

5. ЦАП на источниках тока - схемное построение, основные соотношения, практическая реализация, метрологические характеристики?

6. Принципы построения ЦАП для троичной системы счисления?

Лекция14. Аналого-цифровые

преобразователи

Виды аналого-цифровых преобразователей и их особенно­сти. Ана­лого-циф­ровые преобразователи (АЦП) представляют со­­бой устройства, предназначенные для преобразования электричес­ких величин (напряжения, тока, мощности, сопро­тивления, емкости и др.) в цифровой код [1,2,5,9,10,11]. Наиболее часто входной величиной являет­ся напряжение. Все другие величины перед подачей на такой АЦП нужно предварительно преобразовывать в на-пряжение. Однако на практике находят применение также преобра-зователи, например, сопротивления или емкости в циф­ровой код без проме­жу­точного преобразования в напряжение. Обычно это по­зволяет умень­­­шить погрешность преобразования, но усложняет проектиро­вание преобразователя и его изготовление. Последнее объясняется тем, что серийные промышленные микросхемы АЦП предназначены только для работы с напряжением. Поэтому в дальнейшем будут рассмотрены только преобразователи напряжения в цифровой код.

В общем случае напряжение характеризуется его мгновенным значением u(t). Однако для оценки напряжения можно также пользоваться его средним за выбранный промежуток времени Т значением:

.

В связи с этим все типы АЦП можно разделить на две группы: АЦП мгновен­ных значений напряжения и АЦП средних значений напряжения. Так как операция усреднения предполагает интегрирование мгновенного значения напряжения, то АЦП средних значений часто называют интегрирующими.

При преобразовании напряжения в цифровой код используются три независи­мых операции: дискретизация, квантование и кодирование. Процедура аналого-цифрового преобразования непрерывного сигнала представляет собой преобразо­вание непрерывной функ­­ции напряжения u(t) в последовательность чисел u(tn), где п= 0, 1,2..., отнесенных к некоторым фиксированным моментам времени. При дискретизации непрерывная функция u(t) преобразуется в последовательность ее отсчетов u(tn), как показано на рис.14.1, а.

Вторая операция, называемая квантованием, состоит в том, что мгновенные значения функции u(t) ограничиваются только определенными уровнями, которые называются уровнями квантования. В результате квантования непрерывная функ­ция u(t) принимает вид ступенчатой кривой uк(t), показанной на рис. 14.1,б.

Рис.14.1. Процесс дискретизации (а) и квантования (б) сигнала u(t)

Третья операция, называемая кодированием, представляет дискретные квантованные величины в виде цифрового кода, т.е. последовательности цифр, подчинённых определённому закону. С помощью операции кодирования осуществляется условное представление численного значения величины.

В основе дискретизации сигналов лежит принципиальная возможность представления их в виде взвешенных сумм:

,

где аn – некоторые коэффициенты или отсчёты, характеризующие исходный сигнал в дискретные моменты времени, fn(t) – набор элементарных функций, используемый при восстановлении сигнала по его отсчётам.

Дискретизация бывает равномерная и неравномерная. При равномерной дискретизации период отсчётов Т остаётся постоянным, а при неравномерной – период может изменяться. Неравномерная дискретизация чаще всего обусловлена скоростью изменения сигнала и потому называется адаптивной.

В основе равномерной дискретизации лежит теорема отсчётов, согласно которой в качестве коэффициентов аn нужно использовать мгновенные значения сигнала u(tn) в дискретные моменты времени tn=Tn, а период дискретизации выбирать из условия T=(2fm)-1, где fm - максимальная частота в спектре исходного сигнала.

Для сигналов с ограниченным спектром теорема отсчётов имеет вид

и называется формулой Котельникова.

При дискретизации сигнала появляется погрешность, обусловленная конечным временем одного преобразования и неопределенностью момента времени его окончания. В результате вместо равномерной дискретизации получаем дискретизацию с переменным периодом. Такая погрешность называется апертурной. Если считать, что апертурная погрешность определяется скоростью изменения сигнала, то ее можно определить по формуле

,

где Ta - апертурное время, u’(tn) - скорость изменения сигнала в момент времени tn, т. е.

.

Для гармонического сигнала u(t)=Umsinωt максимальное значение апертур­ной погрешности получим при условии u'(t) = Um, т. е. при cosωt = 1. Относительная апертурная погрешность в этом случае будет иметь значение

. (14.1)

Сравнивая период дискретизации, определенный по теореме отсчетов, с апертурным временем (14.1), получим

,

откуда следует, что для снижения апертурной погрешности приходится в раз увеличивать частоту преобразования АЦП. Так, например, при дискретизации гармонического сигнала с частотой fm =10кГц по теореме отсчетов достаточно иметь максимальную частоту АЦП Fm =2fт=20 кГц; при погрешности δa= 10-2 необходимо увеличить эту частоту до значения 2fтπ/δa=20·103π/10-2 = 6,3МГц.

В отличие от дискретизации, которая теоретически является обратимой операцией, квантование представляет собой необратимое преобразование исходной последовательности и сопровождается появлением неизбежных погрешностей. Характеристика идеального квантователя приведена на рис.14.2, а. При равномерном квантовании расстояние между двумя соседними значениями делается постоянным, как показано на рис. 14.1, б. Разность между двумя соседними значениями квантованной величины называется шагом квантования h.

 

Рис.14.2. Характеристика иде­­­­аль­ного квантователя (а) и гра­фик изменения погреш-­

ности кван­тования (б)

 

По существу кванто­вание представляет собой опе­рацию округления непрерывной величины до ближайшего целого значения. В результате максимальная погрешность квантования равна ±0,5h (рис. 14.1,6). Однако при преобразовании произвольного сигнала максимальная погрешность встречается сравнительно редко, поэтому в большинстве случаев для оценки качества АЦПиспользуют не максимальную, а среднеквадратическую погрешность δкв=h/ , которая примерно в 3,5 раза меньше максимальной. В АЦПпогрешность квантования определяется как единица младшего значащего разряда (ЕМР).

Выходной величиной АЦПявляется цифровой код, т. е. последовательность цифр, с помощью которой представляются дискретные кантованные величины. В АЦПиспользуют четыре основных типа кодов: натуральный двоичный, деся­тичный, двоично-десятичный и код Грея. Кроме этого, АЦП, предназначенные для вывода информации в десятичном коде, выдают на своем выходе специализированный код для управления семисегментными индикаторами.

Большинство АЦПработают с выходом в натуральном двоичном коде, при котором каждому положительному числу N ставится в соответствие код ,

где bi равны нулю или единице. При этом положительное число в двоичном коде имеет вид

. (14.2)

Такой код принято называть прямым: его крайний правый раз­­ряд является млад­шим, а крайний левый - старшим. Прямой код пригоден лишь для работы с однополярными сигналами. Полный диапазон преобразуемого сигнала равен 2 n, а Nmax =2 n -1.

Двоичные числа, используемые в АЦП, как правило, нормализованы, т. е. их абсолютное значение не превышает единицы. Они пред­ставляют собой отношение входного сигнала к полному диапазону:

. (14.3)

Если АЦПдолжен работать с двуполярными числами, то наиболее часто используют дополнительный код, который образуется вычитанием преобразуемого числа С из постоянной величины 2 n+1. Ина­­че говоря, находится допол­нение до двух к числу С. Диапазон представления чисел в двоичном коде имеет пределы от 2m до 1-2-m. Нуль имеет одно значение 000... 0.

При использовании в АЦПдвоично-десятичных кодов каждая значащая десятичная цифра представляется четырьмя двоичными зна­ками и содержит десять значений сигнала от О до 9. Так, например, десятичное число 10 можно представить как 0001 0000, а число 99 можно представить в виде 1001 1001.

Так как при кодировании четырьмя двоичными знаками можно получить 16 кодовых значений, то приведенное двоично-десятич­ное представление не является единственным. Наиболее широко ис­пользуют коды, в которых цифрам в тетрадах присваивают веса 8-4-2-1 или 2-4-2-1:

1.

Основные характеристики АЦП. Любой АЦП является сложным электронным устройством, которое может быть выполнено в виде одной интегральной микросхемы или содержать большое количество различных электронных компонентов. В связи с этим характеристики АЦП зависят не только от его построения, но и от характеристик элементов, которые входят в его состав. Тем не менее, большинство АЦП оценивают по их основным метрологическим показателям, которые можно разделить на две группы: статические и динамические.

К статическим характеристикам АЦП относят: абсолютные значения и полярности входных сигналов, входное сопротивление, значения и полярности выходных сигналов, выходное сопротивление, значения напряжений и токов источников питания, количество двоичных или десятичных разрядов выходного кода, погрешности преобразования постоянного напряжения и др. К динамическим параметрам АЦП относят: время преобразования, максимальную частоту дискретизации, апертурное время, динамическую погрешность и др.

Рассмотрим некоторые из этих параметров более подробно. Основной характеристикой АЦП является его разрешающая способность, которую принято определять величиной, обратной максимальному числу кодовых комбинаций на выходе АЦП. Разрешающую способность можно выражать в процентах, в количестве разрядов или в относительных единицах. Например, 10-разрядный АЦП имеет разрешающую способность (1024)-1»10-3=0,1%. Если напряжение шкалы для такого АЦП равно 10В, то абсолютное значение разрешающей способности будет около 10мВ.

Реальное значение разрешающей способности отличается от расчетного из-за погрешностей АЦП. Точность АЦП определяется значениями абсолютной погрешности, дифференциальной и интегральной нелинейности. Абсолютную погрешность АЦП определяют в конечной точке характеристики преобразования, поэтому ее обычно называют погрешностью полной шкалы и измеряют в единицах младшего разряда.

Дифференциальную нелинейность (DNL) определяют через идентичность двух соседних приращений сигнала, т. е. как разность напряжений двух соседних квантов: DNL=hi-hi+1. Определение дифференциальной нелинейности показано на рис.14.3,а.

Рис.14.3. Определе­ние дифференци­аль­ной (а) и интег­раль­ной (б) нели­­­нейнос-

­тей

 

Интегральная нелинейность АЦП (INL) характеризует идентичность приращений во всем диапазоне входного сигнала. Обычно ее определяют, как показано на рис.14.3,б, по максимальному отклонению сглаженной характеристики преобразования от идеальной прямой линии, т. е. INL=ui’-ui.

Время преобразования Tпр обычно определяют как интервал времени от начала преобразования до появления на выходе АЦП устойчивого кода входного сигнала. Для одних типов АЦП это время постоянное и не зависит от значения входного сигнала, для других АЦП это время зависит от значения входного сигнала. Если АЦП работает без устройства выборки и хранения, то время преобразования является апертурным временем.

Максимальная частота дискретuзации - это частота, с которой возможно преобразование входного сигнала, при условии, что выбранный параметр (например, абсолютная погрешность) не выходит за заданные пределы. Иногда максимальную частоту преобразования принимают равной обратной величине времени преобразования. Однако это пригодно не для всех типов АЦП.

Принципы построения АЦП. Все типы используемых АЦП можно разделить по признаку измеряемого значения напряжения на две группы: АЦП мгновенных значений напряжения и АЦП средних значений напряжения (интегрирующие АЦП). Вначале ознакомимся с АЦП, которые позволяют определять код мгновенного значения напряжения, а затем рассмотрим интегрирующие АЦП и особенности их использования.

АЦП мгновенных значений можно разделить на следующие основные виды: последовательного счета, последовательного приближения, параллельные, параллельно-последовательные и с промежуточным преобразованием в интервал времени.

Структурная схема АЦП последовательного счета приведена на рис.14.4 а. Она содержит компаратор, при помощи которого выполняется сравнение входного напряжения с напряжением обратной связи. На прямой вход компаратора поступает входной сигнал uвх, а на инвертирующий - напряжение u5 обратной связи. Работа

Рис.14.4. Структурная схема АЦП последовательного счёта (а)

и графики процесса преобразования (б)

пре­­­об­разователя начинается с приходом импульса «ПУСК» от схемы управления (на рисунке она не показана), который замыкает ключ S. Через замкнутый ключ S импульсы u1 от генератора тактовых импульсов поступают на счетчик, который управляет работой цифро-ана­логового преобразователя (ЦАП). В результате последовательного увеличения выходного кода счетчика N происходит ступенчатое увеличение выходного напряжения u5 ЦАП. Питание ЦАП выполняется от источника опорного напряжения u4.

Когда выходное напряжение ЦАП сравняется с входным напряжением, произойдет переключение компаратора и по его выходному сигналу «СТОП» разомкнется ключ S. В результате импульсы от генератора перестанут поступать на вход счетчика. Выходной код, соответствующий равенству uвх=u5, снимается с выходного регистра счетчика.

Графики, иллюстрирующие процесс преобразования напряжения в цифровой код, приведены на рис.14.4,б. Из этих графиков видно, что время преобразования переменное и зависит от уровня входного сигнала. При числе двоичных разрядов счетчика, равном п, и периоде следования счетных импульсов Т максимальное время преобразования можно определить по формуле:

. (14.4)

Так, например, при n =10 разрядов и Т = 1 мкс (т. е. при тактовой частоте 1 МГц) максимальное время преобразования равно

Tпр =(210-1)=1023мкс»l мс,

что обеспечивает максимальную частоту преобразования около 1кГц.

Уравнение преобразования АЦП последовательного счета можно записать в виде:

,

где 0 ≤k ≤ n - число ступеней до момента сравнения, DU=h - - значение одной ступени, т. е. шаг квантования.

Структурная схема АЦП последовательного приближения приведена на рис.14.5, а. По сравнению со схемой АЦП последовательного счета в ней сделано одно существенное изменение - вместо счетчика введен регистр последовательно­го приближения (РПП). Это изменило алгоритм уравновешивания и сократило время преобразования. В основе работы АЦП с РПП лежит принцип дихотомии, т. е. последователь­ного сравнения преобразуемого напряжения uвх с 1/2, 1/4, 1/8 и т. д. возможного максимального его значения Um. Это позволяет для п -разрядного АЦП выполнить весь процесс преобразования за n последовательных шагов приближения (ите­раций) вместо (2n-1) при использовании последовательного счёта и получить существенный вы-

игрыш в быстродействии. График процесса преобразования АЦП с РПП показан на рис.14.5, б.

В качестве примера на рис.14.5, в показана диаграмма переходов для трех­раз­рядного АЦП последовательного приближения. Поскольку на каждом шаге про­изводится определение значения одного разряда, начиная со старше­го, то такой АЦП часто называют АЦП пораз­рядного уравновешивания. При первом сравне­нии определяется -

больше или меньше напряжение ивх, чем Um/2. На следующем шаге оп­ределяется, в какой четверти диапазона находится uвх. Каждый последую­щий шаг вдвое сужает область возможного результата.

.

Рис.14.5. Структурная схема АЦП последовательного приближения (а),

график процесса преобразования (б) и диаграмма последовательности

переходов для трёхразрядного АЦП (в)

 

При каждом шаге сравнения компаратор формирует импульсы, со­ответствую­щие состоянию «больше-меньше» (1 или О), управляю­щие регистром последова­тельных приближений.

Структурная схема параллельного АЦП приведена на рис.14.6. Преобразова­тель осуществляет одновременное квантование входного сигнала uвх с помощью набора компараторов, подключённых параллельно источнику сигнала. Пороговые уровни компараторов установ- лены с помощью резистивного де­лителя в соответ­ствии с используе­мой шка­лой квантования. При подаче на входы ком­параторов сиг­нала uвх на их выходах получим квантованный сигнал, представ­ленный в уни­тарном коде.

Для преобразования унитарного кода в двоичный (или двоично-десятич­ный) используют кодирующий преобразова­тель.

Рис.14.6. Структурная схема

параллельного АЦП

 

При работе в двоичном коде все рези­сторы делителя имеют

оди­­наковые сопротивления R. Вре­мя преобразования тако­го пре­образователя составляет один такт, т. е. Tпр=Т. Параллельные преобра­зова­тели являются в настоящее время самыми быстрыми и могут работать с частотой дискретизации свыше 100 МГц. Для получения более широкой полосы пропуска­ния компараторы обычно делают стробируемыми.

Делитель опорного напряжения представляет собой набор низкоомных резисторов с сопротивлением около 1 Ом. По выводу «Коррекция» возможно про­ведение коррекции напряжения смещения нулевого уровня на входе, а по выводу Uоп2 - абсолютной погрешности преобразования в конечной точке шкалы. Номи­нальные значения опорных напряжений имеют значения: Uоп1 = -0,075... 0 В, и Uоп2 = -2, 1... -1,9 В. Типовая задержка срабатывания компараторов около 7 нс.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: