полупроводниковых приборов 13 глава




Структурная схема последовательно-параллельного АЦП приведена на рис.14.7. Такой АЦП работает в несколько тактов. В первом такте АЦП преобразует стар­шие разряды входного напряжения uвх в цифровой код (на схеме это разряды 23 …25). Затем во втором такте эти разряды преобразуются с помощью ЦАП в напряжение, которое вычитается из входного сигнала в вычитающем устройстве ВУ. В третьем такте АЦП2 преобразует полученную разность в код младших разрядов входного напряжения ивх.

Такие преобразователи харак­теризуется меньшим быстродействием по срав­нению с параллельными, но имеют меньшее число компараторов. Так, например, для 6-ти разрядного параллельного АЦП необходимо 64 компаратора, а для пос­ледовательно-параллельного АЦП - всего 16.

Рис.14.7. Структурная схема параллельно-после-­

довательного АЦП

 

Количество каскадов в таких АЦП может быть увеличено, поэтому они часто называются многокаскадными или конвейерными. Выходной код таких АЦП представляет собой сумму кодов N = N1 + N2 + Nз +..., вырабатываемых отдельными каскадами.

К АЦП мгновенных значений также относятся некоторые типы АЦП с время­-импульсным преобразованием. Структурная схема такого АЦП приведена на рис.14.8. В основу работы этого преобразователя положен метод преобразования входного напряжения во временной интервал. Графики процесса преобразования приведены на рис.14.8, б. АЦП состоит из генератора линейно-изменяющегося напряжения ГЛИН, двух компараторов К1 и К2, формирователя дли­тельности импульса τи, генератора так­товых импульсов и счетчика, с выхода которого снимается код преобразованного напряжения.

Рис.14.8. Структурная схема время-импульсного преобразования (а)

и графики процесса преобразования (б)

Первый импульс u2 формируется при сравнении напряжения uвх с напряжением u1, а второй импульс uз формируется при достижении напряжением u1 нулевого уровня. Быстродействие таких АЦП невелико: время преобразования в лучшем случае составляет 20... 50 мкс.

Уравнение, описывающее работу АЦП, можно определить следующим обра­зом. Напряжение u1, вырабатываемое ГЛИН, имеет вид:

, (14.5)

где k - крутизна пилообразного напряжения.

Моменты времени t1 и t2 срабатывания компараторов К1 и К2 определяются по формуле (14.5): ; .

Длительность импульса определим как разность τи=t3-t2=uвх/k.Количество импуль­сов, подсчитанных счетчиком, равно N=f0 τи, где f0 - частота тактового генератора.

АЦП средних значений напряжений (интегрирующие АЦП) можно разделить на следующие основные виды: с время-импульсным преобразованием, с частотно-­импульсным преобразованием и со статистическим усреднением. Наибольшее рас­пространение получили первые две группы АЦП.

Структурная схема интегрирующего АЦП с время-импульсным преобразова­нием приведена на рис.14.9, а. Работу этой схемы можно разделить на три такта. В первом такте производится заряд интегратора, во втором - его разряд, а в третьем коррекция нулевого уровня интегратора. Графики, иллюстрирующие ра­боту АЦП, приведены на рис.14.9, б.

В первом такте, имеющем фиксированную длительность То, замк­нут ключ Sl, а остальные ключи разомкнуты. В этом случае входное напряжение uвх через зам­кнутый ключ Sl и сопротивление R1 заряжает емкость С1 интегратора, и выходное напряжение растет линейно во времени, как показано на рис.14.9, б. К. концу ин­тервала То напряжение на выходе интегратора будет равно

, (14.6)

Рис.14.9. Структурная схема АЦП двухтактного интегрирования (а) и

график процесса преобразования (б)

 

где k =R1C1-1 - постоянная времени интегратора, Uвх - среднее значение входного напряжения:

.

Во втором такте происходит разряд интегратора. При этом в зависимости от требуемой полярности источника опорного напряжения, которая всегда противоположна полярности uвх, замыкается один из клю­чей S2 или S3. Разряд интегратора происходит с постоянной скоростью, которая не зависит от накопленного в интеграторе заряда, поэтому с увеличением накоп­ленного заряда время разряда также увеличивается. Конец разряда интегратора фиксируется компаратором K, после чего ключ S2 (или S3) размыкается.

Поскольку начало разряда определяет схема управления, а конец - компара­тор, то длительность разряда интегратора можно определить по формуле:

,

откуда

или , (14.7)

что свидетельствует о пропорциональности интервала Тх среднему значению входного напряжения Uвх. Заполнение интервала Тх счетными импульсами, по­ступающими от схемы управления, позволяет найти числовой код N = Txf0.

К достоинствам интегрирующих АЦП следует отнести их высокую помехоза­щищенность. Если на входной сигнал наложена гармоническая помеха, то при равенстве периода помехи времени заряда интегратора Tп0 среднее значение помехи к концу интервала интегрирования будет равно нулю, как показано пунктирной линией на рис.14.9, б. Случайные помехи и шумы также ослабляются интег­риро­ванием, хотя и в меньшей степени.

На третьем этапе производится коррекция нулевого уровня интегратора. Для этого замыкаются ключи S4 и S5, а остальные ключи раз­мыкаются. Так как вход интегратора через сопротивление R1 соединен с общей шиной, то конденсатор С2 через замкнутый ключ S5 заряжается до напряжения ошибки, которое после раз­мыкания ключей S4 и S5 вычитается из входного сигнала.

К недостаткам таких интегрирующих АЦП относится, прежде всего, сравни­тельно невысокое быстродействие. Кроме этого, при перегрузке АЦП большим входным сигналом происходит перезаряд интегрирующего конденсатора C1, по­этому после снятия перегрузки в течение нескольких циклов АЦП будет работать с большой погрешностью..

Другим типом интегрирующих АЦП являются АЦП с частотно-u.мпульсным преобразованием, принцип работы которых основан на предварительном преобра­зовании входного напряжения в пропорциональную ему частоту следования им­пульсов, которая затем измеряется за фиксированный интервал времени. После подсчета числа импульсов результат выдается в виде цифрового эквивалента входного напряжения.

Структурная схема АЦП с частотно-импульсным преобразо­вани­ем приведена на рис.14.10, а. Основным звеном в этой схеме является преобразователь напряже­ния в частоту (ПНЧ). При помощи ПНЧ

Рис.14.10. Структурная схема АЦП с частотно-импульсным

преобразованием (а) и графики процесса преобразования (б)

 

входное напряжение преобразуется в частоту импульсов, при этом f=kивх. Число импульсов, подсчитанных счетчиком за выбранный интервал времени Ти, определяется формулой

,

где - среднее значение напряжения на интервале Tи .

Графики процесса преобразования АЦПс частотно-импульсным преобразо­ванием приведены на рис.14.10, б. Преобразователь напряжения в частоту может быть построен на различных принципах, однако от его характеристики преобра­зования зависят свойства АЦП. Погрешность ПНЧпрактически полностью вхо­дит в погрешность АЦП. В связи с этим наиболее часто в качестве ПНЧв таких АЦПиспользуется преобразователь с импульсной обратной связью, схема кото­рого приведена на рис.14.11, а. Графики работы АЦПприведены на рис.14.11, б.

Рис.14.11. Структурная схема преобразователя напряжения в частоту с

импульсной обратной связью (а) и графики его работы (б)

ПНЧс импульсной обратной связью состоит из входного повторителя напря­жения, интегратора и компаратора, управляющего генератором импульсов в цепи обратной связи интегратора. Заряд кон-

ден­сатора С1 интегратора· осуществляется входным напряжением uвх, а разряд производится импульсом с постоянной вольт-­секундной площадью. Если входное напряжение имеет отрицательную поляр­ность, то импульсы генератора должны быть положительными и наоборот. Мож­но показать, что частота импульсов прямо пропорциональна входному напряже­нию. Напряжение на выходе интегратора линейно растет до тех пор, пока не сравняется с опорным напряжением Uоп на неинвертирующем входе компаратора К:

,

откуда ,

где i = Uвх/R1, а q= C1 Uоп - накопленный заряд.

В последнее время в связи широким применением АЦПв различных системах сбора и обработки информации появились новые типы преобразователей с улуч­шенными характеристиками. К их числу относятся: АЦПс сигма-дельта модуля­тором, АЦПбыстрого интегрирования и конвейерные АЦП.

Структурная схема АЦП с сигма-дельmа модулятором приведена на рис.14.12. По сути, это название отражает два процесса: интегрирование за малое время и сложение результатов интегрирования. Выходным сигналом такого модулятора является частота импульсов. Схе­ма такого АЦП во многом совпадает с АЦП с частотно- импульс-ной обратной связью. В этом АЦП также производится ком­пенсация

 

Рис.14.12. Структурная схема АЦП с сигма-дель­та

модуля­тором

 

заряда, накопленного в интеграторе, а вместо импульсного генератора используется одноразрядный ЦАП с компаратором на входе.

Структурная схема АЦП быстрого интегри­рования представляет собой интегрирующий АЦП с время-импульс­ным преобразованием, в котором разряд интегратора выполняется ускоренным образом: вначале до некоторого значения Е выходного напряжения от большого напряжения разряда, а затем от малого. Такой процесс разряда похож на работу скоростного лифта. Между эта­жами он движется быстро, а при подходе к остановке резко замедляет скорость. В таких АЦП сокращается время разряда интегратора и увеличивается точность компари­рования в конце разряда.

В конвейерном АЦП мы имеем собой структуру, подобную параллельно-последовательному АЦП, но с увеличенным числом каскадов. Для хранения мгновенных значений напря­жения в каждом каскаде используются устройства выборки и хранения инфор­мации УВХ1... УВХЗ (например, для четырёхкаскадного АЦП). Вычитающие устройства ВУ1... ВУЗ образуют разность напряжений, подлежащую преобразованию в следующем каскаде. Все АЦП 1... АЦП4 параллельные и имеют небольшое число разрядов (обычно не больше четырех).

Интегральные микросхемы АЦП. В последнее время многие фирмы органи­зовали производство серийных интегральных микросхем АЦП, основанных на различных принципах и предназначенных для работы в устройствах сопряжения датчиков аналоговых сигналов с ЭВМ и микропроцессорами, в различных изме­рительных устройствах, мультиметрах, в медицинской аппаратуре, цифровых тер­момет­рах и др. Наиболее крупными производителями АЦП в России являются заводы «Микрон» и «Сапфир», а за рубежом - компании Analog Devices (США), Micro power (США), Philips, Maxim, Sony и др.

Перечисленными фирмами и многими другими выпускается так много раз­личных микросхем АЦП, что трудно даже произвести их сравнение, тем более что многие фирмы используют собственную классификацию и приводят ряд нестан­дартных характеристик. Тем не менее, некоторые выводы из рассмотрения выпус­каемых АЦП можно сделать.

Прежде всего, можно отметить, что резко увеличилась разрешаю­щая способ­ность АЦП. Ряд фирм выпускает АЦП с разрешением до 24 двоичных разрядов (Т. е. 1/16777216). Однако наиболее распространенными являются АЦП с разряд­ностью 8, 10, 12 и 16 разрядов.

Повысилось быстродействие серийных микросхем АЦП. Налажено производ­ство АЦП с максимальной частотой преобразования 20... 50 МГц. Такие АЦП используются при преобразовании видеосигналов в цифровую форму в цифровых телевизорах, видеомагнитофонах, видеомониторах и других устройствах. Одно­временно велось снижение потребляемой мощности. Так, например, 10-разрядный АЦП АО876 фирмы Analog Devices при максимальной частоте преобразования 20 МГц имеет потребляемую мощность всего 160 мВт и стоит около 10 долларов. Такой же по быстродействию параллельный АЦП К1107ПВ2 при 8-ми разрядах потребляет около 3 Вт.

В таблицах 14.1 и 14.2 приведены основные характеристики некоторых типов АЦП мгновенных значений и интегрирующих АЦП.

 

Таблица 14.1

Основные характеристики АЦП мгновенных значений

Тип микро- схемы   Принцип действия Число двоич. разряд. Интегр. нелин., МЗР Дифф. нелин., МЗР Тпр, мкс Fм, МГц
  AD7570     AD677   AD775   AD876   Последовательного приближения с побайтным вводом/выводом Последовательного приближения с перераспределением зарядов Двуступенчатый конвейерный Многоступенчатый конвейерный             ±2,00     ±1,00   ±0,5   ±0,3   ±4,00     ±0.5   ±0,3   ±0,5         18×10-3   10-2     0,1    
Ad7710     1107ПВ3 С сигма-дельта модулятором и уравновешиванием зарядов Параллельного действия, быстродействующий     0,0045     ±0,25   ±0,25   2×10-2 0,156    
     
                 

 

 

Таблица 14.2

Основные характеристики интегрирующих АЦП

Тип микросхемы     Особенности функционирования   Число десятичных разрядов Погрешность преобразования, МЗР
  ICL7107   ILC7135   ILC7117     Двухактное интегрирование с автокомпенсацией нуля Двухтактное интегрирование с коррекцией нуля интегратора Двухтактное интегрирование с режимом хранения данных   3,5   4,5   3,5     ±1   ±2   ±1

 

Контрольные вопросы

1. Виды аналого-цифровых преобразователей и их особенности? Дискретизация, квантование и кодирование - этапы АЦП-преобразования? Теорема Котельникова как основа этого преобразования? Апертурная погрешность?

2. Основные характеристики АЦП и принципы их построения?

3. АЦП последовательного счёта – схемная реализация, работа, временные диаграммы?

4. АЦП последовательного приближения - схемная реализация, работа, временные диаграммы?

5. Структурные схемы параллельного и параллельно-последователь­но­го АЦП – их работа, метрологические характеристики?

6. Интегрирующие АЦП: двухтактные и с частотно-импульсным преоб­разованием – схемные построения, работа, временные диаграммы, метрологические характеристики?

7. Структурные схемы и работа АЦП с сигма-дельта модулятором, АЦП быстрого интегрирования, конвейерные АЦП?

 

 

Лекция15. Устройства выборки и хранения

Назначение и типы устройств выборки и хранения аналоговых сигналов. Как отмечалось в лекции 14, при обработке аналоговых сигналов с частотой, соизме­римой или большей, чем скорость работы АЦП, из аналогового сигнала при­ходится делать выборки (или отсчеты). Для этого некоторое значение сигнала в выбранное время запоминается на интервал, необходимый для того, чтобы про­извести преобразование его в двоичный код с помощью АЦП.

Эту функцию выполняют устройства выборки и хранения (УВХ), которые являются аналоговыми запоминающими устройствами и в зарубежной литературе часто называются Sample-Hold Amplifier (SHA) [1,2,5,9,10,11]. В большинстве случаев для этого используют различные сочетания накопительного конденсатора и аналоговых ключей с согласующими усилителями. Такие устройства можно создавать на базе существующих микросхем широкого применения - мультиплексоров, операцион­ных усилителей и др. Однако поскольку к характеристикам УВХ предъявляются достаточно высокие требования, то в последнее время был налажен выпуск цели­ком интегральных микросхем специализированного назначения.

Хранение данных можно было бы реализовать и в цифровой форме, однако быстродействие и сложность соответствующих устройств не позволили найти им широкое применение. В аналоговых устройствах выборки и хранения фактически производится операция дискретизации непрерывного сигнала с тем, чтобы в даль­нейшем при помощи АЦП произвести его квантование и кодирование. В цифро­вых устройствах выборки и хранения последовательность иная. Вначале выполня­ется квантование сигнала, а затем его дискретизация и запоминание. Структурные схемы этих двух типов УВХ приведены на рис.15.1. На этих схемах сигнал стро­бирования управляет процессом дискретизации, а квантование обычно произ­водится АЦП или линейкой компараторов (типа парал­лельного АЦП).

В основу операции выборки и хранения в идеальном случае по­ло­­жено филь­трующее свойство импульсной функции :

, (15.1)

согласно которому определяется мгновенное значение функции в дискретные моменты времени tn.

Рис.15.1. Устройство выборки и хра­нения аналоговое (а) и цифровое (б)

 

В действительности строби­ро­вание осуществляется при по­мо­щи стробирую­щих сигналов g(t-tn), имеющих конечную дли­тельность и сложную форму, поэто­му определяется некоторая функция от вход­ного сигнала в пре­делах существова­ния стробирующего импульса

, (15.2)

где F - символ функционального преобразования во время действия стробирую­щего импульса g(t-tn).

В связи с этим реальное стробирование можно классифицировать или по виду стробирующего импульса, или по виду функционального преобразования F. По виду стробирующих импульсов различают: прерывание входного сигнала последовательно­стью прямоугольных импульсов с фиксированной длительностью tстр (рис.15.2, а)и модуляцию входного сигнала последовательностью импульсов произвольной формы (рис.15.2,б). Общим для этих двух процессов стробирования является то, что стробиро­ванный сигнал получается в результате перемножения последовательности строб-им­пульсов и входного сигнала, а отличие заключается в механизме получения выборки.

Рис.15.2.Стробирование УВХ с помощью прямоугольных импульсов (а) и амплитудно-импульсной модуляции (б)

 

По способу получения отсчетов входного сигнала различают:

-стробирование прямоугольными импульсами при малой постоян­ной времени цепи хранения выборки;

- стробирование с интегрированием на интервале выборки и

- стробирование перемножением.

При этом наибольшее распространение получили устройства выборки и хране­ния, стробируемые прямоугольными импульсами достаточно малой длительности.

Основные характеристики УВХ. Как было сказано ранее, основной функцией УВХ является запоминание на конденсаторе в течение некоторого времени значе­ния входного напряжения. В режиме выборки УВХ повторяет входной сигнал, а затем по строб-импульсу запоминает мгновенное значение напряжения на конден­саторе и переходит в режим хранения. В связи с этим полный цикл работы УВХ состоит из четырех этапов: 1) выборки, 2) перехода от выборки к хранению, 3) хранения и 4) перехода от хранения к новой выборке.

В режиме выборки основными параметрами УВХ являются: время выборки и коэффициент передачи. Временем выборки tв называется интервал времени, в тече­ние которого образуются выборочные значения напряжения на накопительном конденсаторе. Время выборки задается длительностью стробирующего импульса.

При работе УВХ в режиме слежения время выборки является временем слежения. Время выборки связано с погрешностью δ образования выборочного значения входного напряжения.

Коэффициент передачи Кп (коэффициент усиления) УВХ - это отношение выбранного значения к значению входного напряжения в момент выборки. Наи­более часто УВХ повторяет входной сигнал, т. е. имеет коэффициент передачи, равный единице. Однако в некоторых случаях используются УВХ с усилением входного сигнала. Погрешность коэффициента передачи характеризует его откло­нение от расчетного значения.

При переходе от режима выборки к режиму хранения основными параметра­ми УВХ являются: апертурное время и погрешность переключения. Апертурное время tа представляет собой интервал времени, в течение которого сохраняется неопределенность между образовавшимся выборочным значением сигнала и мо­ментом времени, к которому оно действительно относится. Это время иногда называют апертурной задержкой.

Переход от режима выборки к режиму хранения сопровождается поступлени­ем на схему УВХ сигнала управления (или снятия строб-импульса, поданного на время выборки). Этот сигнал управления наводит через паразитные емкости поме­хи на конденсатор хранения и изменяет результат выборки. Это изменение резуль­тата выборки называется погрешностью переключенuя.

В режиме хранения основным параметром УВХ является скорость изменения выходного напряжения, которая характеризует погрешность УВХ в режиме хране­ния. Обычно этот параметр определяется скоростью разряда накопительного кон­денсатора dUc/dt=I/Cxp, где 1 - сумма токов утечки ключа и тока смещения усилителя, Схр - емкость хранения. Спад выходного напряжения определяет вре­мя храненuя напряжения с заданной погрешностью. Все сказанное относится к аналоговым УВХ и отсутствует в цифровых УВХ.

При переходе от хранения к выборке основным параметром является время установления tуст, которое характеризует длитель­ность переходного процесса пос­ле поступления строба, разрешаю­щего выборку.

Обобщенной характеристикой точности и быстродействия УВХ является его пропускная способность Ct, определяемая количеством информации о входном сигнале, передаваемом на выход УВХ в единицу времени. Эта характеристика обычно определяется по формуле:

, (15.3)

где tв - время выборки нового значения входного сигнала с заданной погрешнос­тью δ.

Время выборки зависит, в основном, от скорости заряда емкости памяти Схр, поэтому чем меньше емкость хранения, тем меньше время выборки и тем выше качество УВХ. Однако при малой емкости происходит потеря информации во время хранения за счет разряда емкости хранения токами утечки. В этом случае компромиссным решением является применение двухкаскадных УВХ.

Принципы построения УВХ. Простейшая схема УВХ приведе­на на рис.15.3, а. Эта схема состоит из ключа, управляемого строб-им­пульсом, и емкости хранения Схр. На рис.15.3,б показан график пре­об­разования входного сигнала при помощи этого идеального УВХ. В режиме выборки выходное напряжение полностью соот­ветствует входному сигналу, а в режиме хранения - мгновенному значению вход­ного сигнала в момент окончания выборки.

Рис.15.3. Простейшая схема УВХ (а) и графики вход­ного и выходного сигналов в идеаль-­

ном случае

 

В действительности использовать такую простую схему невоз­можно по ряду причин: выходное сопротивление источника сигнала и конечное сопротивление ключа приводят к появлению переходного про­цесса, в результате которого процесс заряда растягивается во времени; в режиме хранения конденсатор перезаряжается током утечки ключа и разрядом его на нагрузку; через паразитные емкости ключа сигнал строба изменяет сигнал на на­грузке.

Для улучшения характеристик УВХ применяют операционные усилители. Для построения УВХ достаточно одного ОУ, как показано на рис.15.4,а. Когда вход­ное напряжение изменяется ступенчато, что эквивалентно замыканию ключа S при постоянном входном напряжении, то напряжение на выходе изменяется по уравнению

,

и в результате конденсатор будет заряжен до напряжения -uвх.

Рис.15.4. Схема инвертирующего УВХ на одном ОУ (а) и схема с умень­шением тока утечки ключа на

полевом транзисторе (б)

 

Если за время, пока ключ S разомкнут, напряжение изменится до значения uвх’, то при следующем замыкании ключа выходное напряжение uвых будет перехо­дить к новому значению по уравнению

,

где RC=τс - постоянная времени цепи выборки.

В качестве ключа могут быть использованы схемы на биполяр­ных или полевых транзисторах, диодные мостовые схемы и др. На рис.15.4,б приведена аналогичная схема на ОУ с ключом на полевом транзисторе VT2. В этой схеме в режиме выборки погрешность опре­деляется падением напряжения на сопротив­лении открытого тран­зи­стора VT2 из-за протекания входного тока ОУ.

Для уменьшения тока утечки транзистора VT2 в схему введен ключ на тран­зисторе 1, которой подключает сток транзистора VT2 к общей шине в режиме хранения и тем самым уменьшает ток утечки почти до нулевого уровня. В резуль­тате конденсатор хранения разря­жается только очень малым током утечки за­твора транзистора VT2.

Схемы неинвертирующих УВХ на одном ОУ приведены на рис. 15.5. В схеме, изображенной на рис.15.5, а, на входе установлен повторитель напряжения на ОУ. Это позволяет исключить влияние внутреннего сопротивления источника сигнала на работу УВХ. Однако в этой схеме большую погрешность вносят помехи, кото­рые проходят из цепи управления через емкость затвор-исток полевого транзисто­ра VT1. Кроме того, на разряд конденсатора влияет нагрузка, подключенная к выходу ключа.

Рис.15.5. Схема неинверти­рую­щего УВХ на одном ОУ: с вход­ным повторителем (а) и с выход­-

ным повторителем (б)

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: