Направления диагностирования электрооборудования




 

Электрооборудование Направление диагностирования
Турбогенераторы Диагностика теплового состояния обмотки ротора Диагностика неисправностей обмотки статора Диагностика системы охлаждения стержней обмотки статора Контроль вибрации и диагностика механического состояния Диагностика щеточно-контактного аппарата Контроль электромагнитного излучения Диагностика уплотнений и подшипников Диагностика системы возбуждения
Силовые трансформаторы Хроматографический анализ газов, растворенных в масле Температурный контроль Контроль износа контактов РПН Тепловизионный контроль трансформаторов Регистрация частичных разрядов в изоляции
Выключатели высокого напряжения Контроль коммутационного и механического ресурса Оценка состояния контактной системы Контроль характеристик привода Контроль состояния фарфоровых изоляторов Контроль утечек дугогасительной среды (воздух, элегаз)
Высоковольтные электродвигатели Диагностика обрыва стержней короткозамкнутого ротора Контроль витковых замыканий Вибрационный контроль обмоток статора Контроль подшипникового узла Контроль и защита от неуспешных пусков Контроль эксцентриситета воздушного зазора между ротором и статором Контроль неполнофазных режимов Контроль направления вращения Непрерывный селективный контроль активного сопротивления изоляции Температурный контроль Оценка расхода ресурса на основе контроля пусковых и длительных режимов работы
КРУ и токопроводы Контроль дуговой защиты Тепловизионный контроль состояния электрических контактов и изоляторов
Воздушные и кабельные линии Дистанционная тепловизионная диагностика контактов и подвесной изоляции Контроль частичных разрядов Диагностика опор ЛЭП Контроль состояния изоляции кабелей

Тепловизионный метод контроля получил наибольшее применение в открытых и закрытых распредустройствах напряжением 35 кВ и выше, а также на ЛЭП.

Метод хроматографического контроля маслонаполненного оборудования. Это наиболее проработанный и распространенный в электроэнергетике метод диагностики. Он применим для раннего обнаружения развивающихся дефектов внутри маслонаполненных силовых трансформаторов, автотрансформаторов, шунтирующих реакторов, крупных электрических машин с водомасляной системой охлаждения, измерительных трансформаторов, высоковольтных вводов и высоковольтных кабелей. Хроматография есть разделение смесей. Идея метода основана на предположении, что повреждение в маслонаполненном оборудовании сопровождается выделением различных газов, отсутствующих в масле при нормальной работе. Эти газы растворены в масле. Выделив их из масла и проведя хроматографический анализ, можно обнаружить дефекты на ранней стадии возникновения. В настоящее время изучен состав газов, содержащихся в масле недефектного нормально работающего оборудования, выявлены газы, характерные для различных повреждений, и граничные их концентрации. При этом определяют концентрации водорода , метана , этилена , этана , ацетилена , оксида и диоксида углерода СО, и других газов.

Отбор масла из работающего трансформатора производится специальными маслоотборниками поршневого типа. При этом исключается соприкосновение масла с окружающей воздушной средой и предотвращаются потери растворенных в масле газов в процессе отбора. Масло помещается в замкнутый объем, и газ над поверхностью масла подвергается анализу. Для анализа состава, динамики изменения и концентрации газов в пробах масла применяют хроматографы. Кроме того, известны встроенные средства анализа газов, растворенных в масле, и выделившихся газов, а также устройства непрерывного контроля, основанные на определении и , растворенных в масле. Характер и примерное место повреждения определяют по количественному составу газов. Необходимость выявления дефекта на ранних стадиях его развития требует обработки данных хроматографического анализа. Оценка состояния маслонаполненного оборудования осуществляется, как правило, на базе четырех критериев: предельных концентраций, скорости нарастания концентрации газов, отношений концентраций газов, критерия равновесия.

Первый критерий позволяет судить по значению превышения предельных концентраций о характере внутренних дефектов. Так, сильные повреждения изоляции характеризуются высокой концентрацией водорода и ацетилена и обычно сопровождаются наличием углекислого газа. Относительно большая концентрация насыщенных и ненасыщенных углеводородов , , , (кроме ) в сочетании с небольшим процентом указывает на тепловое разложение масла вследствие перегрева металлических частей. Если присутствует заметное количество СО и , то это означает, что происходит разложение целлюлозы. Резкое увеличение и свидетельствует о сильном локальном перегреве, сопровождающемся обугливанием масла. Если содержание в 10–20 раз больше чем СО при отсутствии других газообразных продуктов разложения, то причиной является термическое разложение целлюлозы. При высоких температурах обнаруживается небольшое количество , а содержание кислорода заметно снижено. Наличие водорода и небольшого содержания этилена и показательно для частичных разрядов. В случае слабого искрения обнаруживается небольшое количество . Присутствие говорит о развивающемся дефекте внутри трансформатора, который необходимо вывести из эксплуатации и осмотреть.

При втором критерии контролируется скорость нарастания концентраций газов. Если прирост содержания газов составляет более 10 % в месяц, трансформатор ставится на учащенный контроль. Достоверность оценки состояния с помощью этого критерия значительно выше по углеводородным газам и СО, чем по водороду и оксиду углерода, потери которых в пробе масла иногда соизмеримы с численными значениями этого критерия.

Третий критерий дает возможность использовать три отношения пар газов: / , / , / . Например условия / <<0,1 и / >1 указывают на дефект термического характера, а отношение / характеризует температуру перегрева. Наиболее частыми причинами упомянутых отношений являются возникновение дефектов в изоляции трансформаторного железа, нагрев и выгорание контактов РПН, нарушение изоляции стяжных шпилек и ярмовых балок с образованием короткозамкнутого контура, нагрев контактов соединений отводов низкого напряжения.

5.17
Четвертый критерий основан на сопоставлении результатов анализа масла из газового реле и из пробы. Используется в случаях срабатывания газовой защиты. На базе этого критерия делается заключение о возможности включения трансформатора в работу и определяется дефект электрического характера, когда повторное включение трансформатора могло бы привести к увеличению очага повреждения.

Перспективным направлением применения указанных критериев является разработка алгоритмов для реализации автоматизированных систем оценки состояния маслонаполненного оборудования. Следует отметить универсальность метода и растущую с увеличением напряжения эффективность его использования.

Метод контроля диэлектрических характеристик изоляции. Основан на измерении диэлектрических характеристик, к которым относятся токи утечки, величины емкости, тангенс угла диэлектрических потерь (tg d) и др. В основе контроля тока утечки лежит измерение тока, проходящего через твердую изоляцию при наличии напряжения. Известны два метода контроля. В первом, прямом методе измеряется модуль комплексной проводимости изоляции или ее емкость. Метод требует регистрации долей процента в изменении контролируемого параметра, применения различных схем повышения чувствительности и помехоустойчивости, что является его недостатком. Во втором методе сравниваются емкость и tg d однотипного электрооборудования с помощью схемы Шеринга. Метод требует наличия специальных измерительных выводов изолированной от земли конструкции. Он может использоваться для контроля за высоковольтными измерительными трансформаторами и конденсаторами связи.

Метод контроля разрядов. Все большее распространение в качестве показателя состояния изоляции электрооборудования получает использование разрядов. Известные методы измерения характеристик разрядов можно разделить на измерение частичных, пазовых и поверхностных разрядов и на электрические и неэлектрические методы. Методы применяются на напряжениях 110 кВ и выше в трансформаторах и электрических машинах.

Исследуются зависимости уровня интенсивности частичных разрядов в изоляции электрических машин от тепловых и механических воздействий. Анализируются данные для выявления связей между характеристиками частичных разрядов и сроками службы изоляции. Измерение частичных разрядов позволяет контролировать состояние изоляции во время испытаний и выявлять ее предаварийное состояние. Наличие частичных разрядов определяется по появляющимся импульсам напряжения и по изменениям электромагнитного поля во внешней цепи с помощью электромагнитного датчика. Известны устройства, контролирующие амплитуду и частоту следования импульсов в определенных диапазонах частот.

Основные трудности применения метода частичных разрядов связаны с наличием помех, обусловленных коммутациями и переходными процессами в первичных цепях установки, наличием коронных разрядов, радиопомех и т.д. Проблема измерения сигнала и его отделения от помех не всегда разрешима. Эффективность использования контроля частичных разрядов увеличивается с ростом рабочего напряжения, так как, с одной стороны, растут напряженность электрического поля и вероятность возникновения дефектов, с другой – появляется возможность отказаться от испытаний повышенным напряжением.

Выявлять пазовые разряды, искрения и образования дуг целесообразно и в обмотках крупных электрических машин под нагрузкой. Причины возникновения разрядов: ослабление пазовых клиньев, истирание и усадка подклиновых прокладок между стержнями обмоток статора, обрыв элементарных проводников, вибрация пластин гибких выводов и др. Выявить искровой, тлеющий и дуговой разряды можно с помощью, например, индуктивных датчиков. Выявить разряды можно также с помощью проводящих электродов, наложенных на изоляцию, емкостных датчиков, подключаемых к нейтрали и линейному выводу, или антенны, устанавливаемой на роторе машины, высокочастотного трансформатора, расположенного в цепи заземления нейтрали, и измерителя радиопомех.

Дефекты стержневых изоляторов, такие как трещины и локальные проводящие загрязнения, являются источниками поверхностных разрядов. Образование поверхностных разрядов сопровождается излучением в звуковом, оптическом и радио диапазонах. Известен метод оптического контроля излучения поверхностных разрядов с помощью электронно-оптического дефектоскопа. Он основан на регистрации пространственно-временного распределения яркости свечения и определении по ее характеру дефектных изоляторов. Для этих же целей с разной эффективностью применяют радиотехнический и ультразвуковой методы, а также метод контроля ультрафиолетового излучения с помощью электронно-оптического дефектоскопа "Филин". Данный принцип можно применить и для выявления таких дефектов, как обрыв стержней ротора асинхронного электродвигателя, образование дуги в КРУ и т.п.

Описанные методы не дают однозначной связи уровня и характера контролируемых параметров с характером и местом повреждения. Они универсальны по принципу и требуют индивидуального подхода к каждому объекту и специальных экспериментальных исследований.

Метод вибродиагностики. Для контроля за техническим состоянием механических узлов большое значение имеет связь параметров объекта с таким интегральным признаком, как спектр частот вибрации. Всякое параметрическое возбуждение смещает спектр. Это и используется в качестве признака. Оценка состояния по смещению низкочастотных составляющих спектра менее эффективна.

Электрофизический метод контроля. Перспективным направлением диагностики электрооборудования является применение электрофизических методов контроля. Достоинство таких методов – быстрое получение первичной информации, удобство ее передачи и представление в виде сигнала отклика. Легко встраиваются датчики в объект, сравнительно проста аппаратурная реализация, хорошие возможности настройки на различные электрофизические эффекты, высока эффективность выявления дефектов. Легко поддаются автоматизации и реализации на ЭВМ.

Методическую основу использования электрофизических методов составляет принцип наблюдаемости, а носителями информации являются электрофизические эффекты, возникающие при активизации физических процессов. По способам проявления, вывода и обработки информации эффекты такого типа можно разделить на интегральные эффекты и связанные с ними переходные процессы, эффекты нелинейности, флуктуационные эффекты и шумы.

Использование электрофизических эффектов производится на основе определения способа проявления дефекта или дефектообразующего фактора в виде конкретного физического процесса и возможности наблюдения за этим процессом внешними средствами. Эта возможность обусловливается силой проявления эффекта и разрешающей способностью применяемых измерительных средств.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: