Выгоды поворотных крыльев




Академия Гражданской Авиации

Реферат

На тему: Особенности конструкций поворотных и треугольных крыльев

Выполнил: Абдрахманов С.

Группа: ЛЭ – 15 (В)

Проверила: Шынтаева А.

Алматы

План

Введение

Поворотные крылья

- Выгоды

- Потери

- Первые модели

Треугольная крылья

- Выгоды

- Потери

Использованные материалы

Введение

Механизация крыла – перечень устройств, которые устанавливаются на крыло самолета для изменения его характеристик на протяжении разных стадий полета. Основное предназначение крыла самолета – создание подъемной силы. Этот процесс зависит от нескольких параметров – скорости движения самолета, плотности воздуха, площади крыла и его коэффициента подъемной силы.

Механизация крыла непосредственно влияет на площадь крыла и на его коэффициент подъемной силы, а также косвенно на его скорость. Коэффициент подъемной силы зависит от кривизны крыла и его толщины. Соответственно можно сделать вывод, что механизация крыла кроме площади крыла еще и увеличивает его кривизну и толщину профиля.
На самом деле не совсем так, ведь увеличение толщины профиля связано с большими технологическими сложностями, не столь эффективно и больше ведет к увеличению лобового сопротивления, потому этот пункт необходимо отбросить, соответственно механизация крыла увеличивает его площадь и кривизну. Делается это с помощью подвижных частей (плоскостей), расположенных в определенных точках крыла. По месторасположению и функциям, механизация крыла делится на закрылки, предкрылки и спойлеры (интерсепторы).

Далее мы рассмотрим особенности конструкции поворотных и треугольных крыльев.

Поворотные крылья:

Как известно, центроплан — это та самая часть самолетного крыла, которая соединяет левую и правую плоскости и служит, собственно, для крепления крыла к фюзеляжу. В соответствии с логикой центроплан должен быть жесткой конструкцией. Но 21 декабря 1979 года в воздух поднялся самолет NASA AD-1, у которого крыло крепилось к фюзеляжу… на шарнире и могло поворачиваться, придавая самолету асимметричную форму.

Впрочем, все началось гораздо раньше — с сумрачного тевтонского гения Рихарда Фогта, главного конструктора легендарной фирмы Blohm & Voss. Фогт, известный нетипичным подходом к проектированию авиатехники, уже строил асимметричные самолеты и знал, что подобная схема не мешает летательному аппарату быть устойчивым в воздухе. И в 1944-м на свет появился проект Blohm & Voss and P.202.

Основной идеей Фогта была возможность значительно снизить лобовое сопротивление при полетах на высоких скоростях. Самолет взлетал с обычным симметричным крылом (поскольку крыло малой стреловидности имеет высокий коэффициент подъемной силы), а в полете оно поворачивалось в плоскости, параллельной оси фюзеляжа, тем самым уменьшая сопротивление. Собственно, это было одно из решений по реализации изменяемой стреловидности крыла — одновременно немцы отрабатывали и классическую симметричную стреловидность на самолете Messerschmitt Р.1101.

 

Выгоды поворотных крыльев

Преимущества у асимметрично изменяемой стреловидности те же, что и у симметричной. Когда самолет взлетает, требуется высокая подъемная сила, когда же летит на высокой скорости (особенно выше скорости звука), подъемная сила уже не столь актуальна, а вот высокое лобовое сопротивление начинает мешать. Авиаинженерам приходится искать компромисс. Изменяя же стреловидность, самолет приспосабливается к режиму полета. Расчеты показывают, что расположение крыла под углом 60° к фюзеляжу значительно снизит аэродинамическое сопротивление, увеличивая максимальную крейсерскую скорость и снижая расход топлива.

Такая схема в среднем на 14% легче и минимизирует волновое сопротивление при полете на скоростях, превышающих скорость звука (то есть преимущества проявляются и в летных показателях). Последнее вызывается ударной волной, возникающей, когда часть обтекающего самолет потока воздуха приобретает сверхзвуковую скорость. Наконец, это самый «бюджетный» вариант изменяемой стреловидности.

Поэтому с развитием технологий человечество не могло не вернуться к интересному концепту. В начале 1970-х по заказу NASA был изготовлен беспилотный аппарат OWRA RPW (Oblique Wing Research Aircraft) — для исследований полетных свойств подобной схемы. Консультантом при разработке был сам Фогт, после войны эмигрировавший в США, на тот момент уже весьма пожилой человек, а главным конструктором и идеологом возрождения идеи — инженер NASA Ричард Томас Джонс. Джонс «болел» за эту идею еще с 1945 года, когда был сотрудником NACA (предшественницы NASA, National Advisory Committee for Aeronautics), и к моменту строительства образца абсолютно все теоретические выкладки были отработаны и тщательно проверены.

Крыло OWRA RPW могло поворачиваться на угол до 45°, у беспилотника имелся рудиментарный фюзеляж и хвост — по сути, это был летающий макет, центральным и единственно интересным элементом которого было крыло. Основную часть исследований проводили в аэродинамическом тоннеле, часть — в реальном полете. Крыло показало себя неплохо, и в NASA приняли решение о строительстве полноценного самолета.

 

 

Недостатки

Главный недостаток симметричной стреловидности — это техническая сложность механизма изменения, его солидные масса и стоимость. При асимметричном изменении устройство значительно проще — по сути, ось с жестким креплением крыла и поворачивающий ее механизм.

Конечно, у асимметричного изменения стреловидности есть и недостатки — в частности, асимметрия лобового сопротивления, паразитные поворачивающие моменты, ведущие к избыточному крену и рысканию. Но все это уже в 1970-х годах можно было победить частичной автоматизацией органов управления.

На самом деле единственный фактор, который «убил» интересную концепцию, — это экономика. Наличие работающих и проверенных схем делает невыгодной разработку сложной и непроверенной системы. Областей применения у нее две — трансконтинентальные перелеты тяжелых лайнеров (главная идея Джонса) и военные беспилотники, способные двигаться со скоростью, превышающей скорость звука (первостепенная задача компании Northrop Grumman).

В первом случае в плюсах — экономия топлива и повышение скорости при прочих равных показателях с обычными авиалайнерами. Во втором наибольшее значение имеет минимизация волнового сопротивления в момент, когда самолет достигает критического числа Маха.

Появится ли серийный летательный аппарат с подобной конфигурацией, зависит исключительно от воли авиастроителей. Если кто-то из них решится вложить деньги в исследования и постройку, а потом докажет на практике, что концепция не только функциональна (это уже доказано), но к тому же и самоокупаема, тогда асимметричное изменение стреловидности имеет шансы на успех. Если же в рамках мирового финансового кризиса таких смельчаков не найдется, «косое крыло» останется еще одной частью богатой на диковинки истории авиации.

Первые модели

Мало кто знает, что первый самолет с изменяемой геометрией крыла был построен вовсе не немцами во время Второй мировой (как утверждает большинство источников), а французскими пионерами авиации бароном Эдмоном де Маркаем и Эмилем Моненом в далеком 1911 году. Моноплан Маркая-Монена был представлен публике в Париже 9 декабря 1911 года, а полугодом позже совершил свой первый успешный полет.

Собственно, де Маркай и Монен придумали классическую схему симметрично изменяемой геометрии — две отдельные плоскости крыла общим максимальным размахом 13,7 м крепились на шарнирах, и летчик мог прямо в полете изменить угол их расположения относительно фюзеляжа. На земле для транспортировки крылья можно было сложить, как складываются крылья у насекомых, «за спину». Сложность конструкции и необходимость перехода к более функциональным самолетам (из-за начала войны) вынудила конструкторов отказаться от дальнейшей работы над проектом.

 

Треугольные крылья

У треугольных крыльев за счет использования малых относительных толщин и малого удлинения можно до минимума свести волновое сопротивление, что особенно важно для сверхзвуковых скоростей полета. В то же время, большие хорды в корневой части крыла обеспечивают получение в этой зоне больших строительных высот, что уменьшает массу конструкции и дает большие объемы для размещения топлива и другой полезной нагрузки. Треугольные крылья обладают большой жесткостью и менее подвержены явлениям аэроупругости. С другой стороны, большая стреловидность по передней кромке и малый размах этих крыльев уменьшают его несущую способность и снижают эффективность механизации, что отрицательно сказывается на взлетно-посадочных характеристиках самолета. Наиболее распространенные конструктивно- силовые схемы треугольных крыльев:

1. многолонжеронное крыло с лонжеронами, перпендикулярными плоскости симметрии самолета (а);

2. однолонжеронное крыло с дополнительными стенками (б);

3. многолонжеронное крыло с лонжеронами, расположенными по образующим крыла (в);

4. кессонное крыло с вспомогательными стенками (г);

5. лонжеронное крыло с подкосной балкой (д).

Особенности силовой работы треугольных крыльев заключаются в следующем.
Лонжероны, силовые панели, стенки, поставленные перпендикулярно плоскости симметрии самолета, обеспечивают наименьшую массу конструкции за счет передачи нагрузки с крыла на фюзеляж по кратчайшему пути. Однако в технологическом отношении такая схема сложна, т.к. пояса лонжеронов, отбортовки продольных стенок в этом случае криволинейны и имеют переменные по размаху малки.
Расположение лонжеронов по образующим линиям крыла обеспечивает прямолинейность и постоянство малок указанных элементов по размаху, что значительно упрощает их изготовление, но масса крыла такой схемы увеличивается за счет большей длины лонжеронов и необходимости постановки силовой бортовой нервюры.
Схема с подкосной балкой обеспечивает конструктивную простоту создания в крыле ниши для размещения стойки шасси.

При расчете на прочность такие крылья рассматривать как тонкостенные нельзя. Так как здесь толщина обшивки соизмерима с толщиной крыла, допущение о постоянстве напряжений по толщине обшивки, принимаемое при расчете тонкостенных конструкций, неправомерно. Расчетными схемами для крыльев без продольных стенок является изотропная пластина, а для крыльев со стенками - анизотропная пластина.
Сравнительная оценка конструктивно шиловых схем треугольных крыльев.
В крыльях с параллельным продольным набором в сравнении с крыльями со сходящимся продольным набором длина лонжеронов меньше, бортовая нервюра не нагружается большими изгибающими моментами из-за отсутствия перелома лонжеронов у борта фюзеляжа, что делает эти крылья более рациональными в весовом отношении.

Преимущества

· Имеет малое относительное удлинение

 

Недостатки

· Возникновение и развитие волнового кризиса;

· Большие сопротивления и более резкое падение максимального аэродинамического качества при изменении угла атаки, что затрудняет достижение большего потолка и радиуса действия.

Использованные материалы:

1. «Конструкция самолетов» О.А. Гребеньков

2. https://aeroconstruction.ru

3. Конструкция самолетов: учебник для студентов авиационных специальностей вузов / Житомирский Г. И. – 3-е изд., перераб.и доп. – М.: Машиностроение, 2005.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-06-30 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: