Дифференциальные уравнения




Практическая работа №3

«Основы интегрального исчисления. Методы нахождения неопределенных интегралов. Вычисление определенных интегралов»

Цель занятия: Научиться решать примеры и задачи по данной теме.

Вопросы теории (исходный уровень):

1. Первообразная функции и неопределённый интеграл.

2. Интегрирова­ние.

3. Методы нахождения неопределенных интегралов: приведение к табличному виду и метод замены переменной, интегрирование по частям.

4. Определённый интеграл, его применение для вычисления площадей фигур и работы переменной силы.

5. Вычисление определенных интегралов, правило Ньютона-Лейбница.

6. Примеры использования интегрального исчисления в медицинских задачах (самостоятельная подготовка)

 

Содержание занятия:

1. ответить на вопросы по теме занятия

2. решить примеры

Примеры

 

Найти интегралы:

1)   2) 3)
4) 5) 6)
7) 8) 9)
10) 11) 12)
13) 14) 15)
16) 17) 18)
19) 20)   21)
22) 23) 24)
25) 26) 27)

 

 

Вычислить интегралы:

1) 2) 3)
4) 5) 6)
7) 8) 9)
10) 11) 12)
13) 14) 15)
16) 17) 18)
19) 21) 22)
23) 24) 25)
26) 27) 28)
29) 30) 31)
32) 33) 34)
35) 36) 37)
38)    

 

 


Тема

Неопределенный интеграл

 

Функция F(x), имеющая данную функцию f(x) своей производной или f(x)dx своим дифференциалом, называется первообразной данной функции f(x). Совокупность всех первообразных функций для дифференциала f(x)dx называется неопределенным интегра­лом и обозначается символом ∫ f(x)dx.

Свойства неопределенного интеграла

∫f(x)dx=F(x)+C

∫[f(x)+φ(x)]dx=∫ f(x)dx+∫φ(x)dx

∫ d(F(x))=F(x)+C

(∫f(x)dx)=f(x)

∫f(x)dx= ∫f(t)dt

d∫f(x)dx=f(x)dx

∫af(x)dx+a∫f(x)dx

Основные интегралы

∫dx=x+C

∫xndx=xn+1/ (n+1) +C (n≠-1)

∫dx/x=ln|x|+C

∫axdx=ax/lna +C

∫exdx=ex+C

∫sin x dx=-cos x +C

∫cos xdx=sin x +C

∫dx/cos2x=tgx+C

∫dx/sin2x=-ctgx+C

∫dx/(1-x2)1/2=arcsinx=-arccosx

∫dx/(1+x2)= arctgx=- arcctgx

Интегрирование по частям

∫ udv = uv—∫ vdu.

Пример

Найти у = ∫ ln хdх.

Полагаем и=lпх, dv = dx, тогда dи =dx/x, v = x

Используя формулу интегрирования по частям, получаем

 

у = ∫ ln xdx = x ln х-∫ dх = xlnx-x+C

Пример метод непосредственного интегрирования

Найти у= ∫ (1+ 2x2)dx

На основании свойства интеграла суммы запишим

у= ∫ (1+ 2x2)dx = ∫ dx+2 ∫ x2dx =x+2x3/3+C

 

Пример; метод замены переменной(метод подстановки)

∫tgxdx=∫(sinx/cosx)dx обозначим cosx=t

Продифферинцируем праву и левую часть

-sinxdx=dt найдем dx=dt/(-sinx)

Запишим интеграл через новые переменные

∫(sinx/t) dt/(-sinx) =-∫dt/t= lnt+C или lncosx+C

 

Определенный интеграл

Определенный интеграл функции f(x) на отрезке [а, b] представляет предел интегральной суммы

lim∑f(ki)Δxi (от i=1 до n и Δx→0)

где ki — произвольная точка соответствующего отрезка.

 

 

Формула Ньютона — Лейбница

 

где F′ — первообразная функцию f(x), т е

F′(x)=f(x)

Некоторые свойства определенного интеграла

 

Площадь криволинейной трапеции, ограниченной графиком функции f(x), осью абсцисс и прямыми х=а и х=b,

 

Площадь фигуры, ограниченной двумя кривыми y=.f1(x) и у = = f2(x) [ f'2(x)≥f1(x)] и двумя прямыми х=а и х=b,

Дифференциальные уравнения

 

Общий вид дифференциального уравнения

F(x,y,y′,y″,…yn) = О

Общee решение дифференциального уравнения

y=f(x, C1,C2,, Сn)

Общий вид дифференциального уравнения первого порядка

F(x,y,y') = 0

Общее решение дифференциального уравнения первого порядка

y= f(x,C)

примеры

1 Дифференциальное уравнение типа y'=f(x)

dy/dx=f(х), dx = f(x)dx

Общее решение

y=∫f(x)dx=F(x)+C

Дифференциальное уравнение типа

у' = f(y)

dy/dx=f(y), dy/f(y)=dx

 

Общее решение

∫dy/f(y)=F(y)+C

Дифференциальное уравнение с разделенными переменными

f(x) dx + φ(y)dy = 0

Общее решение

∫f(x) dx + ∫φ(y)dy = C, F(х) + Ф(у) = С

Дифференциальное уравнение с разделяющимися переменными

f(x)φ(y)dx+ψ(x)Ф(y)dy=0

Приведем это уравнение к уравнению с разделенными переменными

(f(x)/ψ(x))dx+(Ф(y)/φ(y))dy=0

Общее решение

∫(f(x)/ψ(x))dx+∫(Ф(y)/φ(y))dy=C, F1(x)+F2(y)=C

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-03-31 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: