Занимательные математические задачи для учащихся 5-х классов с ответами




ЛОГИЧЕСКИЕ ЗАДАЧИ ПО МАТЕМАТИКЕ ДЛЯ УЧЕНИКОВ 5, 6, 7 КЛАССОВ

 

ЗАДАЧА 1.

Известный бизнесмен Андрей Крутой пришел в Госбанк, чтобы обменять несколько 50- и 100- долларовых купюр старого образца.
Ему было выдано 1999 купюр достоинством 1, 5 и 25 долларов.
Докажите, что его обсчитали.

 

ЗАДАЧА 2.

Три землекопа за два часа выкопали три ямы.
Сколько ям выкопают шесть землекопов за пять часов?

 

ЗАДАЧА 3.

Кот Матроскин и пес Шарик каждое утро бегают на речку умываться. Они выскакивают из дома одновременно и бегут по одной и той же тропинке. Скорость каждого из них постоянна, но Матроскин бежит в 3 раза быстрее Шарика, зато моется в 2 раза дольше, чем Шарик. Однажды Шарик, прибежав к речке, обнаружил, что не взял с собой полотенце. Он тут же побежал домой, схватил полотенце и прибежал к речке как раз в тот момент, когда Матроскин закончил умываться (бежал Шарик по той же тропинке и с той же скоростью, что и каждое утро).
Кто обычно прибегает домой раньше – Шарик или Матроскин или они прибегают домой одновременно?

 

ЗАДАЧА 4.

В Цветочном городе живет 14 коротышек. Они объединены в различные партии. По закону, партия должна состоять не менее чем из 3 коротышек, и две разные партии не могут состоять из одних и тех же членов. Кроме того, каждый коротышка может быть членом не более 2 партий.
Какое наибольшее число партий может быть в Цветочном городе?

 

ЗАДАЧА 5.

Во время шторма капитан корабля приказал выбросить за борт половину из 30 тюков с товарами, которые везли два купца. Купцы были в нерешительности: каждому было жаль выбрасывать свой груз. Видя это, капитан сказал: «Сделаем так: матросы расставят 30 тюков по кругу, а мы будем по кругу ходить и выбрасывать каждый девятый тюк, пока не выбросим половину тюков». Один из купцов подкупил матросов, и они сумели расставить тюки так, что 15 оставшихся на палубе тюков оказались с товарами одного купца.
Как были расставлены тюки?

 

ЗАДАЧА 6.

Футбольный мяч сшит из 32 лоскутков: белых шестиугольников и черных пятиугольников. Каждый черный лоскуток граничит только с белыми, а каждый белый - с тремя черными и тремя белыми. Сколько лоскутков белого цвета?

 

ЗАДАЧА 7.

Инженер ежедневно приезжал на станцию в одно и то же время, и в то же время за ним подъезжала машина, на которой он ехал на завод. Однажды инженер приехал на станцию на 55 мин раньше обычного. Сразу пошел навстречу машине и приехал на завод на 10 мин раньше, чем обычно.
Во сколько раз скорость инженера меньше скорости машины?

 

ЗАДАЧА 8.

В вагоне электропоезда ехали из города на дачу две подруги-школьницы.
«Я замечаю, – сказала одна из подруг, – что обратные дачные поезда нам встречаются через каждые 5 мин. Как ты думаешь, сколько дачных поездов прибывает в город в течение одного часа, если скорости поездов в обоих направлениях одинаковы?» «Конечно, 12, так как 60: 5 = 12», – сказала вторая подруга. Но школьница, задавшая вопрос, не согласилась с решением подруги и привела ей свои соображения. А что вы думаете по этому поводу?

 

ЗАДАЧА 9.

В триседьмом царстве живут драконы. У каждого дракона одна, две или три головы,
а) Может ли у 40 % драконов быть 60 % голов?
б) Может ли у 40 % драконов быть 70 % голов?

 

ЗАДАЧА 10.

У филателиста Бори большое количество марок. Однажды он решил разместить их в большом альбоме, состоящем из 1000 страниц, так, чтобы на всех заполненных страницах марок было поровну (какие-то страницы в конце альбома могут остаться пустыми). Но когда Боря попробовал раскладывать по 7 марок на странице, то у него 5 марок осталось (но не все страницы были заполнены). Тогда он стал раскладывать сначала по 11 марок на странице, затем – по 13 марок на странице. Но снова у него оба раза осталось 5 марок. Наконец, когда Боря решил разложить по 23 марки на странице, то на этот раз у него осталось 6 марок.
Сколько марок в коллекции у Бори?

 

РЕШЕНИЯ ЗАДАЧ.

 

Решение задачи 1.

Для решения этой задачи необходимо воспользоваться следующим известным утверждением: сумма любого числа четных чисел – четная, а нечетного числа нечетных чисел – нечетная. В нашем случае исходная сумма денег (сумма какого-то числа 50-долларовых и 100-долларовых купюр) – четная, а полученная сумма денег (сумма 1999 купюр по 1, 5 и 25 долларов) – нечетная.

 

Решение задачи 2.

Шесть землекопов за 2 часа выкопают 3 · 2 = 6 ям. Шесть землекопов за 10 часов выкопают 6·5=30 ям. Тогда шесть землекопов за 5 часов выкопают 30: 2 = 15 ям.

 

Решение задачи 3.

Разделим дорогу от дома к речке на три участка одинаковой длины (см. рисунок) и эту длину примем за 1.


Введем новую единицу измерения – «шарик»; по определению, 1 «шарик» – это время, нужное Шарику, чтобы утром по дороге на речку пробежать участок длины 1.
По условию, когда Матроскин добегает до D (начинает умываться), Шарик как раз находится в точке B (ведь он бежит в 3 раза медленнее Матроскина). Следовательно, на дорогу от дома до речки (так же, как и на обратную дорогу) Матроскин затрачивает столько же времени, сколько нужно Шарику, чтобы пробежать отрезок длины 1, т. е. 1 «шарик».
Матроскин умывается 8 «шариков» (действительно, в тот день, когда Шарик забыл полотенце, он, как всегда, добежал до точки B, а Матроскин в этот момент начал умываться, затем Шарик пробежал 8 раз отрезок длины 1: от B к D (два участка длины 1), от D к A(три участка длины 1) и, наконец, от A к D уже с полотенцем (три участка длины 1), - и как раз Матроскин в этот момент умываться закончил). Далее, так как по условию Матроскин моется в два раза дольше Шарика, то Шарик моется 4 «шарика».
Остается подсчитать время, затраченное каждым из наших героев на дорогу от дома к речке, умывание и дорогу обратно, от речки к дому. Шарик: 3 + 4 + 3 = 10 «шариков»; Матроскин: 1 + 8 + 1 = 10 «шариков».
Следовательно, Матроскин и Шарик прибегают домой после умывания одновременно.

 

Решение задачи 4.

Пусть в каждой партии выдают партийные билеты. Если в цветочном городе k партий, то на руках у населения не менее 3k партийных билетов (ведь в каждой партии по условию не менее 3-х членов). Но у каждого коротышки имеется не более 2-х партийных билетов (по условию каждый коротышка не может быть членом более 2-х партий). Следовательно, так как коротышек 14, всего партийных билетов не более 2 x 14 = 28.
Поэтому 3k < или = 28, т. е. k < или = [28/3] = 9.
Остается привести пример вхождения 14 коротышек в 9 партий такой, чтобы:
1) в каждой партии было не меньше 3 членов;
2) каждый коротышка являлся бы членом не более 2-х партий;
3) никакие две разные партии не состоят из одних и тех же членов (при выводе оценки k < или = 9 мы использовали только условия 1) и 2)).
Пронумеруем коротышек числами от 1 до 14. Условимся коротышек, входящих в какую-либо партию, заключать в фигурные скобки {}. Нужный пример иллюстрируют, например, партии: {1,2,3}, {4,5,6}, {7,8,9}, {10,11,12}, {13,14,1}, {2,3,4}, {5,6,7}, {8,9,10}, {11,12,13}.
Всего 9 партий.

 

Решение задачи 5.

Начертим круг, отметим на нем 30 палочек и пронумеруем их от 1 до 30. Начиная счет с цифры 1, перечеркиваем девятую палочку, затем восемнадцатую, затем двадцать седьмую и продолжаем этот процесс, вычеркивая каждую девятую из не перечеркнутых ранее палочек. Таким образом, будут перечеркнуты палочки с номерами 5, 6, 7, 8, 9, 12, 16, 18, 19, 22, 23, 24, 26, 27, 30. Значит, купец просил матросов расставить тюки следующим образом: 4 своих, 5 чужих, 2 своих, 1 чужой, 3 своих, 1 чужой, 1 свой, 2 чужих, 2 своих, 3 чужих, 1 свой, 2 чужих, 2 своих, 1 чужой.

 

Решение задачи 6.

Обозначим искомое число лоскутков белого цвета через x. Тогда лоскутков черного цвета будет 32 - x. Чтобы составить уравнение, подсчитаем двумя способами количество границ белых лоскутков с черными. Каждый белый лоскут граничит с тремя черными, следовательно, число границ равно 3x. С другой стороны, каждый черный лоскут граничит с пятью белыми и число границ равно 5(32 – х). Получаем уравнение 3x = 5(32 – х), т.е. 8х = 160 и х = 20.

 

Решение задачи 7.

За 10 мин машина проходит путь, равный двойному расстоянию от станции до места встречи инженера с машиной. Значит, путь от станции до места встречи машина проходит за 5 мин. На месте встречи машина была за 5 мин до времени обычного приезда инженера на станцию, значит, путь от станции до места встречи инженер шел 55 мин - 5 мин = 50 мин. Следовательно, скорость инженера в 50: 5 = 10 раз меньше скорости машины.

 

Решение задачи 8.

Скорости поездов одинаковы, поэтому за одно и тоже время они проходят одно и тоже расстояние. Из сказанного выше следует, что в город прибудут в течение одного часа только дачные поезда встречающиеся в первой половине часа (30 минут), а дачные поезда встречающиеся во второй половине часа не будут успевать доходить до города за оставшееся время.
Значит, в течение одного часа в город прибывает 30: 5 = 6 дачных поездов.

 

Решение задачи 9.

а) Покажем, что у 40% драконов может быть 60% голов. Пусть в этом царстве живет 100 драконов: 40 драконов с одной головой, 20 – с двумя головами и 40 – с тремя. Тогда число голов у всех драконов равно 40 • 1 + 20 • 2 + 40 • 3 = 200. При этом все 40 трехглавых драконов, что составляет 40% от общего числа драконов, имеют 40 • 3 = 120 голов, что составляет 120/200 • 100% = 60% от общего числа голов.
б) Пусть число драконов равно х, а общее число голов у них равно у. Предположим, что какие-то 40% драконов имеют 70% голов. Тогда, поскольку каждый из этих драконов имеет не более трех голов, то 0,7у < или = 3 • 0,4х. С другой стороны, поскольку остальные 60% драконов имеют 30% голов и у каждого из них не менее одной головы, то 0,6х < или = 0,3y. Но эти неравенства не могут выполняться одновременно, так как они равносильны соответственно 7у < или = 12х и 12x < или = 6у. Поэтому у 40% драконов не может быть 70% голов.

 

Решение задачи 10.

Пусть у Бори х марок. Согласно условию х – 5 делится на 7, на 11 и на 13. Следовательно, поскольку 7,11 и 13 – простые числа, то х – 5 делится на их произведение, т. е. на 7 • 11 • 13 = 1001. Поэтому х – 5 = 1001k для некоторого натурального k, откуда х = 1001k + 5.
Далее, согласно условию х – 6 делится на 23. Поэтому х – 6 = 23m для некоторого натурального m. В результате, получим
1001k – 1 = 23m. (*)
Остается только найти натуральные k и m, удовлетворяющие этому равенству. При этом, поскольку согласно условию х/7<1000 и, значит, х<7000, то достаточно рассмотреть k = 1,2,..., 6. Нетрудно убедиться, что только при k = 2 из уравнения (*) получится натуральное значение m = 87.
Поэтому находим единственное значение х = 1001•2 + 5 = 2007.

Занимательные математические задачи для учащихся 5-х классов с ответами

1. Из гнезда вылетели три ласточки. Какова вероятность того, что через 15 секунд они будут находиться в одной плоскости? (Ответ: 100%, так как три точки всегда образуют одну плоскость)

2. На столе лежат две монеты, в сумме они дают 3 рубля. Одна из них — не 1 рубль. Какие это монеты? (Ответ: 2 рубля и 1 рубль. Одна то не 1 рубль, а вот другая — 1 рубль)

3. С какой скоростью должна бежать собака, чтобы не слышать звона сковородки, привязанной к ее хвосту? (Ответ: Если выдумаете, что ей нужно бежать со сверхзвуковой скоростью, то вы ошибаетесь — собаке достаточно стоять на месте)

4. Один оборот вокруг Земли спутник делает за 1 ч 40 мин, а другой — за 100 минут. Как это может быть? (Ответ: 1 ч 40 мин = 100 мин)

5. Крыша одного дома несимметрична: один скат ее составляет с горизонталью угол 60 градусов, другой — угол 70 градусов. Предположим, что петух откладывает яйцо на гребень крыши. В какую сторону упадет яйцо — в сторону более пологого или крутого ската? (Ответ: Петухи не кладут яйца)

6. В 12-этажном доме есть лифт. На первом этаже живут всего 2 человека, от этажа к этажу количество жильцов увеличивается вдвое. Какая кнопка в лифте этого дома нажимается чаще других? (Ответ: Независимо от распределения жильцов по этажам, кнопка «1»)

7. В двух кошельках лежат две монеты, причем в одном кошельке монет вдвое больше, чем в другом. Как такое может быть? (Ответ: Один кошелек лежит внутри другого)

8. Сын отца профессора разговаривает с отцом сына профессора, причем сам профессор в разговоре не участвует. Может ли такое быть? (Ответ: Да, может, если профессор — женщина)

9. Два сына и два отца съели 3 яйца. Сколько яиц съел каждый? (По одному яйцу каждый)

10. На складе было 5 цистерн с горючим, по 6 т в каждой. Из двух цистерн горючее выдали. Сколько цистерн осталось? (5)

11. Вообрази, что ты капитан футбольной команды. В районе 8 футбольных команд по 11 человек в каждой. Игроки вашей команды на 2 года моложе своего капитана, а игроки других — только на 1 год. Сколько лет капитану вашей команды? (Столько, сколько лет отвечающему)

12. Пара лошадей пробежала 20 км. Сколько километров пробежала каждая лошадь? (20 км)

13. Когда сороке исполнится 4 года, что с ней произойдет? (Будет жить пятый год)

14. Если в 11 часов ночи идет дождь, то возможно ли через 48 часов солнечная погода? (Нет, так как будет ночь)

15. Чтобы сварить 1 кг. мяса требуется один час. Сколько времени потребуется для варки ½ кг мяса? (1 час)

16. У Марины было целое яблоко, две половинки и 4 четвертинки. Сколько было у нее яблок? (3)

17. На грядке сидели 6 воробьев, к ним прилетели еще 5. Кот подкрался и схватил одного воробья. Сколько воробьев осталось на грядке? (Один, которого схватил кот. Остальные улетели)

18. Мальчик написал на бумажке число 86 и говорит своему товарищу: «Не производя никакой записи, увеличь это число на 12 и покажи мне ответ». Недолго думая, товарищ показал ответ. А вы это сделать сумеете? (Перевернуть бумажку «вверх ногами»)

19. В клетке находились 4 кролика. Четверо ребят купили по одному из этих кроликов и один кролик остался в клетке. Как это могло получиться? (Одного кролика купили вместе с клеткой)

20. Летели утки: одна впереди и две позади, одна позади и две впереди, одна между двумя и три в ряд. Сколько всего летело уток? (Три утки, одна за другой)

21. У одного старика спросили, сколько ему лет. Он ответил, что ему сто лет и несколько месяцев, но дней рождения у него было всего 25. Как это могло быть? (Этот человек родился 29 февраля, т. е. день рождения у него бывает один раз в четыре года)

22. Что это такое: две ноги сидели на трех, а когда пришли четыре и утащили одну, то две ноги, схватив три, бросили их в четыре, чтобы четыре оставили одну? (Повар сидел на стуле, имеющем три ножки, пришла собака и утащила куриную ногу. Повар бросил стул в собаку, чтобы она оставила куриную ногу)

23. Часы бьют каждый час и отбивают столько ударов, сколько показывает часовая стрелка. Сколько ударов отобьют часы в течение 12 часов? (Количество ударов равняется 1+2+3+...+12...= 78. Сумма членов, равноотстоящих от концов (1+12,2+11,3+10,...) равны между собой — 13. Таких пар равноотстоящих от концов чисел имеется 6. Значит, 1+2+3+...+12=6 13=78)

24. Летели скворцы и встретились им деревья. Когда сели они по одному на дерево, то одному скворцу не хватило дерева, а когда на каждое дерево сели по два скворца, то одно дерево осталось незанятым. Сколько было скворцов и сколько деревьев? (Предположим, что после того как скворцы сели на деревья по два, с каждого дерева взлетело по одному скворцу. Один из взлетевших скворцов может сесть на незанятое дерево, тогда на каждом дереве будет сидеть по одному скворцу. По условию, если на каждое дерево сядет по одному скворцу, то один скворец останется в воздухе. Значит, взлетело 2 скворца. Тогда общее число скворцов равно 4, а число деревьев З).

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-08-04 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: