Химические свойства сахарозы




В растворе сахарозы не происходит раскрытие циклов, поэтому она не обладает свойствами альдегидов.

1) Гидролиз (в кислотной среде):

C12H22O11 + H2O → C6H12O6 + C6H12O6.

сахароза глюкоза фруктоза

2) Являясь многоатомным спиртом, сахароза дает синее окрашивание раствора при реакции с Cu(OH)2.

3) Взаимодействие с гидроксидом кальция с образованием сахарата кальция.

4) Сахароза не реагирует с аммиачным раствором оксида серебра, поэтому ее называют невосстанавливающим дисахаридом.

Полисахариды.

Полисахариды – высокомолекулярные несахароподобные углеводы, содержащие от десяти до сотен тысяч остатков моносахаридов (обычно гексоз), связанных гликозидными связями.

Важнейшие из полисахаридов – это крахмал и целлюлоза (клетчатка). Они построены из остатков глюкозы. Общая формула этих полисахаридов (C6H10O5)n. В образовании молекул полисахаридов обычно принимает участие гликозидный (при С1 -атоме) и спиртовой (при С4 -атоме) гидроксилы, т.е. образуется (1–4) -гликозидная связь.

С точки зрения общих принципов строения полисахариды можно разделить на две группы, а именно: на гомополисахариды, состоящие из моносахаридных единиц только одного типа, и гетерополисахариды, для которых характерно наличие двух или более типов мономерных звеньев.

С точки зрения функционального назначения полисахариды также могут быть разделены на две группы: структурные и резервные полисахариды. Важными структурными полисахаридами являются целлюлоза и хитин(у растений и животных, а также у грибов, соответственно), а главные резервные полисахариды - гликоген и крахмал (у животных, а также у грибов, и растений соответственно). Здесь будут рассмотрены только гомополисахариды.

Целлюлоза (клетчатка) − наиболее широко распространенный структурный полисахарид растительного мира.

Главная составная часть растительной клетки, синтезируется в растениях (в древесине до 60% целлюлозы). Целлюлоза обладает большой механической прочностью и исполняет роль опорного материала растений. Древесина содержит 50-70% целлюлозы, хлопок представляет собой почти чистую целлюлозу.

Чистая целлюлоза – белое волокнистое вещество, без вкуса и запаха, нерастворимое в воде и в других растворителях.

Молекулы целлюлозы имеют линейное строение и большую молекулярную массу, состоят только из неразветвленных молекул в виде нитей, т.к. форма остатков β-глюкозы исключает спирализацию.. Целлюлоза состоит из нитевидных молекул, которые водородными связями гидроксильных групп внутри цепи, а также между соседними цепями собраны в пучки. Именно такая упаковка цепей обеспечивает высокую механическую прочность, волокнистость, нерастворимость в воде и химическую инертность, что делает целлюлозу идеальным материалом для построения клеточных стенок.

Целлюлоза состоит из остатков α,D-глюкопиранозы в их β-пиранозной форме, т. е. в молекуле целлюлозы β-глюкопиранозные мономерные единицы линейно соединены между собой β-1,4-глюкозидными связями:

При частичном гидролизе целлюлозы образуется дисахарид целлобиоза, а при полном гидролизе - D-глюкоза. Молекулярная масса целлюлозы 1 000 000−2 000 000. Клетчатка не переваривается ферментами желудочно-кишечного тракта, так как набор этих ферментов желудочно-кишечного тракта человека не содержит β-глюкозидазу. Вместе с тем известно, что присутствие оптимальных количеств клетчатки в пище способствует формированию кала. При полном исключении клетчатки из пищи нарушается формирование каловых масс.

Крахмал − полимер такого же состава, что и целлюлоза, но с элементарным звеном, представляющим собой остаток α-глюкозы:

Молекулы крахмала свернуты в спираль, большая часть молекул разветвлена. Молекулярная масса крахмала меньше молекулярной массы целлюлозы.

Крахмал – это аморфное вещество, белый порошок, состоящий из мелких зерен, не растворимый в холодной воде, но частично растворимое в горячей.

Крахмал представляет собой смесь двух гомополисахаридов: линейного - амилозы и разветвленного - амилопектина, общая формула которых (С6Н10O5)n.

При обработке крахмала теплой водой удается выделить две фракции: фракцию, растворимую в теплой воде и состоящую из полисахарида амилозы, и фракцию, лишь набухающую в теплой воде с образованием клейстера и состоящую из полисахарида амилопектина.

Амилоза имеет линейное строение, α, D- глюкопиранозные остатки связаны (1–4) -гликозидными связями. Элементная ячейка амилозы (и крахмала вообще) представляется следующим образом:

Молекула амилопектина построена подобным образом, однако имеет в цепи разветвления, что создает пространственную структуру. В точках разветвления остатки моносахаридов связаны (1–6) -гликозидными связями. Между точками разветвления располагаются обычно 20-25 глюкозных остатков.

 

(амилопектин)

Как правило, содержание амилозы в крахмале составляет 10-30%, амилопектина - 70-90%. Полисахариды крахмала построены из остатков глюкозы, соединенных в амилозе и в линейных цепях амилопектина α-1,4-глюкозидными связями, а в точках ветвления амилопектина - межцепочечными α-1,6-глюкозидными связями.

В молекуле амилозы связано в среднем около 1000 остатков глюкозы, отдельные линейные участки молекулы амилопектина состоят из 20-30 таких единиц.

В воде амилоза не дает истинного раствора. Цепочка амилозы в воде образует гидратированные мицеллы. В растворе при добавлении йода амилоза окрашивается в синий цвет. Амилопектин также дает мицеллярные растворы, но форма мицелл несколько иная. Полисахарид амилопектин окрашивается йодом в красно-фиолетовый цвет.

Крахмал имеет молекулярную массу 106-107. При частичном кислотном гидролизе крахмала образуются полисахариды меньшей степени полимеризации - декстрины, при полном гидролизе - глюкоза. Крахмал является наиболее важным для человека пищевым углеводом. Крахмал образуется в растениях при фотосинтезе и откладывается в виде "резервного" углевода в корнях, клубнях и семенах. Например, зерна риса, пшеницы, ржы и других злаков содержат 60-80% крахмала, клубни картофеля – 15-20%. Родственную роль в животном мире выполняет полисахарид гликоген, "запасающийся", в основном, в печени.

Гликоген − главный резервный полисахарид высших животных и человека, построенный из остатков α-D-глюкозы. Эмпирическая формула гликогена, как и крахмала (С6Н10O5)n. Гликоген содержится практически во всех органах и тканях животных и человека; наибольшее количество его находится в печени и мышцах. Молекулярная масса гликогена 107-109 и выше. Его молекула построена из ветвящихся полиглюкозидных цепей, в которых остатки глюкозы соединены α-1,4-глюкозидными связями. В точках ветвления имеются α-1,6-глюкозидные связи. Гликоген по своему строению близок к амилопектину.

В молекуле гликогена различают внутренние ветви - участки полиглюкозидных цепей между точками ветвления, и наружные ветви - участки от периферической точки ветвления до нередуцирующего конца цепи. При гидролизе гликоген, подобно крахмалу, расщепляется с образованием сначала декстринов, затем мальтозы и, наконец, глюкозы.

Хитин − структурный полисахарид низших растений, в особенности грибов, а также беспозвоночных животных (главным образом членистоногих). Хитин состоит из остатков 2-ацетамидо-2-дезокси-D-глюкозы, связанных между собой β-1,4-глюкозидными связями.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-06-21 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: